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ABSTRACT

Aflatoxin, a mycotoxin, is one of the world’s most potent carcinogen. It 

contaminates major food products such as milk, grains, nuts, corn, etc., leading to greater 

than $ 1 billion in economic losses and when ingested causes hepatocellular carcinoma 

(HCC). It is the primary risk factor for 75% HCC cases in the developing world and 3% 

HCC cases in developed world. Most common methods used in agriculture to reduce 

aflatoxin contamination are expensive, time consuming and have low efficiency with 

limited success rates where as biological controls were proven to be most effective in 

inhibiting aflatoxins and aflatoxin producing fungi. Vibrio gazogenes, a non-pathogenic 

gram-negative marine bacterium, was proven to synthesize antifungal and antiaflatoxin 

metabolites. In this research study we have used Aspergillus parasiticus and Aspergillus 

flavus – two saprophytic pathogenic fungi as aflatoxin-producing models. Preliminary 

experimentation by treating V. gazogenes with aflatoxin produced aflatoxin responsive 

metabolites (ARMs) that had the ability to significantly decrease aflatoxin synthesis by 

inhibiting the aflatoxin genes (aflR, nor-1, ver-1) and global secondary metabolism genes 

(LaeA, VeA). But the decrease in aflatoxin was only 40%. So we treated the fungal 

cultures with the cells of V. gazogenes and the aflatoxin ELISAs revealed the significant 

decrease (>99%) in aflatoxin biosynthesis by the fungi. The aflatoxin inhibitory effect 

was very specific to V. gazogenes and not to other gram-positive or gram-negative 

bacterium. Infecting corn kernels with A. flavus in the presence of bacterium significantly 

decrease the fungal conidial growth by 50% and aflatoxin by 98%. Treating drosophila 
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flies with V. gazogenes prior to A. flavus infection increased their survival. Using 

confocal, scanning electron and transmission electron microscopies we observed the 

uptake of the bacterium by the fungus into vesicles. RT-PCR assays revealed that live V. 

gazogenes cells significantly up-regulate aflatoxin genes (aflR, nor-1, ver-1) and global 

secondary metabolite genes (laeA, veA). The pathway through which V. gazogenes 

inhibits aflatoxin is complicating. But our study had clearly developed a novel tool (V. 

gazogenes) to inhibit the aflatoxin biosynthesis, which is acting at the cellular level rather 

than at the gene level. 
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CHAPTER 1 

INTRODUCTION

1.1 AFLATOXINS 

Aflatoxins are one of the most potent and dangerous carcinogens known 

worldwide (Schmale and Munkvold, 1998). They were discovered in the 1960s when 

100,000 turkeys died in Britain due to a toxin found in their peanut meal. The 

investigation led to the discovery of toxins secreted by Aspergillus flavus (Negash, 2018). 

The term aflatoxin is an acronym of Aspergillus flavus toxins (Brase S 2013). Aflatoxins 

are low molecular weight molecules of secondary metabolism produced by fungi 

belonging to the genus Aspergillus and Penicillium, during favorable growth conditions 

of oxygen, moisture (>7%), warm temperatures (24-35oC) and substrate (sugar) 

(Williams et al., 2004). Aflatoxins are a group of structurally related compounds 

consisting of 5 rings – a furofuran moiety, an aromatic ring, a lactone ring and either a 

pentanone or a lactone ring to complete the structure (Brase S 2013) (Figure 1.1). More 

than 20 known aflatoxins exists of which aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), 

aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) are the primary aflatoxins and aflatoxin M1 

(AFM1) and aflatoxin M2 (AFM2) are the hydroxylated metabolites of AFB1 and AFB2 

(Kumar et al., 2016). 

According to the Chicago council on global affairs, 25% of all harvests in USA 

are contaminated by mycotoxins of which aflatoxin contamination of corn alone causes 
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losses at the high end of $1 billion (Mitchell et al., 2016). In the USA alone, the number 

of samples tested positive for aflatoxin increased 6% from 2012 to 2013. The FDA limits 

for aflatoxin human consumption is 20ppb, animal feeds is 300ppb and for aflatoxin M1 

in milk is 0.5ppb (FDA 2011). Aflatoxins contaminate crops, produce, food, nuts, cereal, 

milk, juices, homes, wood, etc., and can be ingested into intestines and enter systemic 

circulation. Depending on the amount of dose and length of period of intake, aflatoxin 

ingestion, inhalation or adsorption causes aflatoxicosis. Large doses for a short period of 

time lead to acute illness - abdominal pain, vomiting, enlarged liver, liver damage, fever, 

hemorrhage, pulmonary edema, digestive symptoms, convulsions etc. Chronic sub-lethal 

doses lead to immunologic suppression, decreased nutritional uptake, decreased growth 

and underweight in children and promoting liver cancers (Williams et al., 2004). 

Aflatoxin B1 has been categorized as class 1A human carcinogen by the International 

Agency of Research on Cancer (IARC) because it causes hepatocellular carcinoma. It is 

projected that 25,200-155,000 cases of liver cancer worldwide are attributed to aflatoxin 

exposure (Wu et al., 2011). 

Aflatoxin undergoes biotransformation primarily in the liver of both human and 

animal bodies producing a highly reactive epoxide that can bind to DNA, RNA, and 

proteins altering mitochondria structures and electron transport, effecting cell division 

and disrupting protein synthesis (Bbosa et al., 2013). Aflatoxin B1 can be passively 

absorbed through the intestines and is further metabolized by cytochrome P-450 

(CYP1A2, 3A4, 3A5, 3A7) enzymes in liver generating a mixture of metabolites of 

which aflatoxin-8,9-epoxide is highly reactive forming DNA adducts that are capable of 

GC to TA mutations inhibiting the tumor suppressor gene p53 (Bbosa et al., 2013) (Wu et 
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al., 2011) (Gratz et al., 2007) (Carlos A. Muro-Cach 2004). This p53 mutation had been 

observed in 30-60% of the liver cancers in aflatoxin-exposed cases. The reactive epoxide 

also binds to proteins in liver inhibiting them causing significant cellular damaging and 

acute aflatoxicosis in both humans and animals (REF). Aflatoxin also crosses placenta 

and is metabolized by the fetal CYP450 liver enzymes producing the same highly 

reactive epoxide. Thus aflatoxins are toxic, mutagenic, and carcinogenic (Bbosa et al., 

2013). 

1.2 Aspergillus flavus and Aspergillus parasiticus 

Aflatoxin is biosynthesized by many Aspergillus species such as A. flavus, A. 

parasiticus, A. nominus, A. pseutotamarii, A. bombycis, A. toxicarius, A. 

parvisclerotigenus, A. minisclerotigenes, A. arachidicola, and A. pseudocaelatus. But 

primarily aflatoxins are produced in copious amounts by A. flavus and A. parasiticus, 

which can cohabit and flourish on practically any crop or food including but not limiting 

to maize, oilseeds, spices, groundnuts, tree nuts, milk, and dried fruit (Strosnider et al. 

2006) (Varga et al., 2011). Aspergillus can also synthesize aflatoxin during postharvest 

handling of storage, transportation and food processing (Wu 2011). 

Aspergillus parasiticus is a soil mold that was discovered in 1912 by a pathologist 

A. T. Speare (Horn et al., 2009).  It is a saprophyte, a plant pathogen and an opportunistic 

pathogen to humans and animals and produces aflatoxins B1, B2, G1 and G2. 

The fungus Aspergillus flavus is a saprophyte, growing in humid environments 

with pathogenic ability causing aspergillosis in immuno-compromised humans effecting 

the skin, oral mucosa and subcutaneous tissues (Hedayati, et al. 2007: 1677-92). 
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According to the centers for disease control and prevention (CDC) approximately 4.8 

million cases of aspergillosis were diagnosed worldwide and A.flavus is the second most 

leading cause. A.flavus also infects corn, peanuts and cotton by releasing aflatoxins. 

Aflatoxin B1, an A.flavus secondary metabolite, has been categorized as class 1A human 

carcinogen by the International Agency of Research on Cancer (IARC) and contaminates 

crops, produce, food, nuts, cereal, milk, juices, homes, wood, etc., and can be ingested 

into intestines and enter systemic circulation causing aflatoxicosis and liver cancer. 

Most A.flavus strains are susceptible to antifungal therapy but the minimum 

inhibitory concentrations are atleast two fold higher than for other Aspergillus species 

(Krishnan, et al. 2009: 206-22). Furthermore, recent discoveries revealed the presence of 

active multi drug resistant genes in A.flavus strains increasing their potential for drug 

resistance and pathogenicity (Tobin, et al. 1997: 11-23) (Van Der Linden, et al. 2011: 

S82-9). Aflatoxin B1 synthesized by A.flavus is extremely stable and cannot be detoxified 

by cooking or autoclaving and thus pollutes many food groups being ingested by humans 

and animals. 

1.3 Vibrio gazogenes 

Most common methods used in agriculture to reduce aflatoxin contamination are 

expensive, time consuming and have low efficiency with limited success rates. Novel 

therapies are required to fight against A.flavus strains and inhibit both its pathogenicity 

and aflatoxin production without affecting the host physiology. In their zeal to find new 

anti-fungal and anti-aflatoxin agents scientists have turned towards plant and microbe 

derived compounds especially from organisms that live in aflatoxin induced 
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environments (Holmes, et al. 2008: 559-72). Vibrio gazogenes is a marine gram-negative 

bacterium notoriously known for its synthesis of antifungal pigments. Studies have 

shown that when V.gazogenes comes in contact with aflatoxin, the toxin induces 

V.gazogenes to synthesize antifungal and anti-aflatoxin compounds (Gummadidala, et al. 

2016: 814). Understanding the mechanism by which V.gazogenes decreases aflatoxin and 

inhibits pathogenicity of A.flavus will help us further understand how to develop, design 

and target A.flavus pathogen and decrease mortality rates of fungal infected patients and 

plants. Similarly, fungal bacterial interactions can be used as model systems for 

generation of new antifungals. Finally polymicrobial (bacterial and fungal) colonies pose 

a potential problem in clinical setting given their multi-drug resistance capabilities, 

understanding the molecular pathways that define the fungal bacterial interactions is an 

important step towards discovering new therapeutic targets. 
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Figure 1.1: Chemical structures of the primary 6 Aflatoxins: The lettering inside the 
chemical structure of Aflatoxin B1 represents the various rings – A and B make up the 
furofuran moiety, C is the aromatic ring, D is the lactone ring and E is either a pentone or 
lactone ring 
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CHAPTER 2 

AFLATOXIN-EXPOSURE OF Vibrio gazogenes AS A NOVEL SYSTEM 

FOR THE GENERATION OF AFLATOXIN SYNTHESIS INHIBITORS1 
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2.1 ABSTRACT 

Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known 

liver carcinogen that contaminates several important crops, and represents a significant 

threat to public health and the economy. Available approaches reported thus far have 

been insufficient to eliminate this threat, and therefore provide the rational to explore 

novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial 

plants and microbes that share ecological niches and encounter the aflatoxin producers 

have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, 

reports of natural aflatoxin inhibitors from marine ecosystem components that do not 

share ecological niches with the aflatoxin producers are rare. Here we show that a non-

pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of 

aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite 

fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model 

aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant 

metabolite in this fraction was also different from the known prodigiosins, which are the 

known antifungal secondary metabolites synthesized by this Vibrio. Gene expression 

analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin 

synthesis by down-regulating the expression of early-, middle- and late- growth stage 

aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of 

secondary metabolism, LaeA. Our study establishes a novel system for generation of 

aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored 

Vibrio’s silent genome for generating new modulators of fungal secondary metabolism. 
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2.2 INTRODUCTION 

Aflatoxins are a group of secondary metabolites that are synthesized primarily by 

food-borne fungi such as Aspergillus parasiticus and Aspergillus flavus. These Aspergilli 

contaminate a variety of economically important crops such as corn, wheat, peanuts, tree 

nuts, dried fruits, vegetables, and medicinal plants in tropical and subtropical areas 

worldwide (Trail et al., 1995, Bennett and Klich, 2003, Chanda et al., 2009, Georgianna 

and Payne, 2009). Aflatoxin B1 is the most potent liver carcinogen known and its 

contamination in food and feed is a significant risk factor of liver cancer risk in humans 

and animals (CAST, 2003, Liu and Wu, 2010). With liver carcinomas already being the 

third leading cause of cancer-related mortality worldwide, the global increase in 

prevalence of hepatitis B virus (HBV) and immunocompromised population has 

increased the risk of aflatoxin-induced liver cancer (Liu and Wu, 2010). The elimination 

of aflatoxin accumulation in food and feed, therefore, is of primary importance for 

reducing its global burden on public health and economy. 

Common agricultural approaches used for prevention of aflatoxin contamination 

in crops include use of fungicides, biocontrol agents and fungi-resistant plants, crop 

rotation, choice of a plantation time that avoids the aflatoxin-conducive climatic 

conditions, and control of environmental factors during post-harvest (Kabak et al., 2006, 

Wu and Khlangwiset, 2010a, Wu and Khlangwiset, 2010b, Cary et al., 2011). However, 

most of these strategies are expensive, time-consuming and have demonstrated limited 

success. To complement these conventional strategies, the use of compounds and 

extracts, collected from plants and microbes that share ecological niches with the 

aflatoxin producers, are becoming increasingly popular (Holmes et al., 2008). Examples 
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of these natural compounds include a variety of naturally derived volatile compounds 

(Greene-McDowelle et al., 1999, Zeringue, 2000, Roze et al., 2004, Roze et al., 2007, 

Roze et al., 2011). Despite the significant efforts in discovering aflatoxin biocontrol 

agents, over 55 billion people worldwide still suffer from uncontrolled exposure to 

aflatoxin (Strosnider et al., 2006), resulting in an est. 25,200 to 155,000 liver cancer cases 

globally (Liu and Wu, 2010). Chronic low-level exposure to aflatoxins and other 

carcinogenic mycotoxins remains a serious health threat in the US (Kensler et al., 1992) 

and it is estimated that children in rural areas of the southern US ingest ~40 µg aflatoxin 

each day through contaminated food; a situation contributing to the significant rise in 

aflatoxin-induced liver cancer cases (Stoloff, 1976, Van Rensburg, 1977). NIH statistics 

indicate that 16,600 new cases of aflatoxin-induced liver cancer annually in the US 

(Kensler et al., 2011). Therefore, the aflatoxin monitoring programs and the destruction 

and/or decontamination of agricultural commodities, which are adopted to meet aflatoxin 

levels imposed by regulations from US and Europe for food and feed, remain an 

expensive and time-consuming process. Hence development of additional novel 

methodologies and compounds for aflatoxin elimination is essential. 

Vibrio gazogenes is an estuarine Gram-negative bacterium that is well-known for 

its ability to synthesize industrially-relevant proteins such as amylases and proteases 

(Ratcliffe et al., 1982) and bactericidal and fungicidal pigments, magnesidin A (Imamura 

et al., 1994), prodigiosins and cycloprodigiosins (Allen et al., 1983). Previous studies 

have also shown that random mutations in this bacterium with 1-methyl-3-nitro-l-

nitrosoguanidine expanded its metabolic output and activated the synthesis of additional 

bactericidal prodigiosin-related pigments, norprodigiosin and propyl prodigiosin 



www.manaraa.com

 
 

11 

(Alihosseini et al., 2010). This prompted us to hypothesize that a portion of the 

bacterium’s metabolic potential remains silent under normal growth conditions, and can 

be activated by genetic and environmental perturbations. In this study, we conducted 

alterations of metabolism in V. gazogenes through exposures to non-toxic doses of the 

mycotoxin, aflatoxin. While aflatoxin B1 has been reported to bind to several probiotic 

bacteria (Kabak et al., 2009) and has also demonstrated the ability to alter 

bioluminescence responses in V. fischeri (Li et al., 2011), there remains a lack of 

understanding on how interaction of aflatoxin B1 or other mycotoxins affect fundamental 

bacterial cell biology. To our surprise, aflatoxin exposure to V. gazogenes diminished 

prodigiosin release into the growth medium, but additionally resulted in the production of 

a new compound that demonstrated the ability to specifically-inhibit aflatoxin synthesis 

in the model aflatoxin producer, A. parasiticus.  Here we report the findings of this study. 

We establish a novel system for generation of aflatoxin-inhibitors and provide a new 

avenue in our fundamental understanding of Vibrio cell biology. 

2.3 MATERIALS AND METHODS 

2.3.1 Strains, media, and growth conditions 

A. parasiticus, SU-1 (ATCC 56775), a wild-type aflatoxin producer. The strain 

was grown on 100 mm petri dishes containing potato dextrose agar for 2 weeks. Fresh 

spores collected from these colonies were used for all the experiments in this study that 

involved the use of SU-1. In these experiments the fungus was grown in aflatoxin-

inducing yeast-extract-sucrose (YES); a rich growth medium (containing 2% w/v yeast 

extract, 6% w/v sucrose, pH 5.8), by inoculation of 104 spores per mL of liquid medium 
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and incubated in the dark (29°C; shaking at 150 rpm). The bacterium Vibrio gazogenes 

ATCC 43942 (Farmer, Hickman-Brenner et al. 1988), that was originally isolated from 

sea water, was grown in Difco Marine Broth 2216 (BD Biosciences, Sparks, MD) at 

28°C in a shaking incubator (190 rpm). 

2.3.2 Growth measurements of A. parasiticus and V. gazogenes 

All fungal growth quantifications were performed using dry weight 

measurements. Briefly, the mycelia were filtered out of the growth media using a 

miracloth (Millipore, Billerica, MA) and dried at 75°C for 6 hrs and the final weight was 

recorded. All Vibrio growth measurements were performed using absorbance readings of 

growth media at 600 nm. 

2.3.3 Aflatoxin exposure experiments, extraction and analysis of Vibrio metabolites 

Aflatoxin B1 was commercially obtained (Sigma). Three different doses (0.1, 0.2, 

or 0.3 µg/mL) of aflatoxin B1 were added to the Vibrio growth medium at the start of the 

culture. In the control flask only the vehicle (70% Methanol) was added.  To extract the 

metabolites from V. gazogenes the cells were first harvested by centrifugation and 

extracted with 60 mL acetone. A portion of the filtrate was concentrated by evaporation 

under N2 gas. The concentrate was loaded onto a silica gel column (1.2 x 15 cm) and 

eluted with dichloromethane : methanol (80:1.5). The fractions were then purified on a 

silica gel column using chloroform and methanol (50:2). After purification the fractions 

were concentrated by evaporation under N2 gas and re-suspended in 1 mL methanol for 

spectral analysis. 
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2.3.4 ARMs exposure experiments and aflatoxin comparisons 

Comparative semi-quantitative estimations of accumulation of aflatoxin in growth 

medium was performed using thin layer chromatography (TLC) of the growth medium as 

described previously (Banerjee, Gummadidala et al. 2014) 

2.3.5 Total RNA purification and transcript analysis 

Isolation of total RNA from fungal cells exposed to aflatoxin response 

metabolites from V. gazogenes was performed using 30h old cultures. This is a time point 

that corresponds to the activation of secondary metabolism (hence the expression of 

aflatoxin genes in A. parasiticus) under the growth conditions adopted in this study 

(Roze, Arthur et al. 2007). Purification of total RNA and preparation of complementary 

DNA was performed as described previously (Chanda, Roze et al. 2009). Transcript 

levels were quantified by performing quantitative real-time PCR assays using 

SsoAdvanced universal SYBR Green supermix (BioRad Laboratories, Hercules, CA) and 

gene-specific forward and reverse primers (Table 2.1) that were designed using Primer3 

online software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Reactions were 

performed in a CFX96 thermal cycler (Bio-Rad Laboratories, Hercules, CA). As 

described for previous gene expression studies in A. parasiticus (Roze, Arthur et al. 2007, 

Chanda, Roze et al. 2009), expression value of each gene was obtained from the 

threshold cycle values were normalized against β-tubulin (the house keeping gene) in 

each sample. All RT-PCRs were performed in triplicates for each gene per sample. Data 

analyses were performed using CFX Manager software (Bio-Rad Laboratories). 
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2.3.6 Statistical analysis 

All statistical tests were performed using GraphPad Prism Software (GraphPad, 

CA, USA). Statistical analyses to determine for statistical significance of differences 

between control versus experimental groups were determined using one-way ANOVA 

(with sample size 3). An unpaired t-test was used to determine the gene expression 

effects of ARMs on A. parasiticus compared to the untreated samples. Significance was 

set at p<0.05. 

2.4 RESULTS 

2.4.1 Aflatoxin B1 exposures do not inhibit V. gazogenes growth 

As a first step in understanding how V. gazogenes, responds to aflatoxin B1, we 

investigated the effect of three different doses of aflatoxin B1 on the growth of V. 

gazogenes. The doses, 10 ppb, 30 ppb and 50 ppb were either below, approximately equal 

to or 5-fold higher than the highest-allowed aflatoxin level (20 ppb) in food and feed 

(Mazumder and Sasmal 2001, CAST 2003 , Liu and Wu 2010). Time-course absorbance 

readings were recorded to compare the growth rates of V. gazogenes, in presence of 

aflatoxin B1, with untreated-controls. As shown in figure 2.1, none of the aflatoxin B1 

doses demonstrated any significant effect on the growth of V. gazogenes. 

2.4.2 Aflatoxin B1 exposures do not inhibit prodigiosin synthesis 

Next, we investigated the effect of aflatoxin B1 exposures on the production of 

prodigiosins by V. gazogenes. The prodigiosin fraction was obtained from cells (either 

untreated control cells or cells exposed to aflatoxin B1) using our optimized laboratory 
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protocol (see methods). Since the prodigiosins exhibit an absorbance peak at 530 nm 

(figure 2.2a), this wavelength was used to compare prodigiosin levels between 

experimental treatments and controls at three different time-points of growth (12h, 18h 

and 42h). Our results (figure 2.2b) demonstrated that although cells exposed to aflatoxin 

B1 showed a minor increase in absorbance values compared to the untreated samples, the 

difference was not statistically significant. 

2.4.3 Additional V. gazogenes metabolite fraction obtained by bacterial exposure to 

aflatoxin B1: aflatoxin response metabolites (ARMs) 

While growth and prodigiosin production by V. gazogenes was not affected in 

presence of aflatoxin B1, we observed that exposure to aflatoxin B1 resulted in a distinct 

alteration of color in the growth medium (figure 2.3a) suggesting the presence of a 

different metabolite compared to untreated cells. Based on the ‘blue-shift’ in color of the 

growth medium (bright red to orange) upon addition of aflatoxin B1, we hypothesized 

that the bacterium synthesizes an additional metabolite fraction under these conditions 

with a corresponding absorbance lower than that of the prodigiosin fraction. To test this, 

we performed UV-Vis spectral analysis on the metabolite fractions of aflatoxin B1-treated 

samples. The Vibrio metabolite fractions obtained from aflatoxin B1 treated samples 

revealed a new absorbance peak at 470 nm, in addition to the prodigiosin peak at 530 nm 

(Figure 2.3b). This suggested that aflatoxin B1 exposure affects the cellular metabolism of 

V. gazogenes resulting in a different metabolite profile, compared to the untreated 

control. Here, we denote this additional metabolite fraction in response to aflatoxin B1 

exposure as ‘aflatoxin response metabolites (ARMs)’. 
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2.4.4 ARMs do not inhibit A. parasiticus growth but inhibits aflatoxin synthesis 

Next we proceeded to investigate whether ARMs affect the aflatoxin synthesis in 

the model aflatoxin B1 producer, A. parasiticus. The activation of ARM production by 

Vibrio occurred upon addition of aflatoxin B1 to their growth medium. Therefore, we 

envisioned this alteration of metabolite profiles as a defensive response from Vibrio cells. 

We hypothesized that ARMs will have a specific inhibitory effect on aflatoxin synthesis 

in the producer cells. To test this we studied the growth and aflatoxin production by A. 

parasiticus in presence of two different doses of the ARMs metabolite fraction (1 µg and 

2 µg per mL of growth medium); the doses were chosen arbitrarily. To compare the 

levels of aflatoxin biosynthesis in A. parasiticus exposed to ARMs exposed with the 

untreated cells, we adopted a semi-quantitative approach in which we compared the 

intensities of aflatoxin B1 and aflatoxin B2 bands on the thin-layer chromatography (TLC) 

plates (see methods). As predicted, our TLC results generated from 40h cultures of A. 

parasiticus, demonstrated that ARMs applied at the concentration of 2 µg per mL of 

growth medium inhibited both aflatoxin B1 and aflatoxin B2 by approximately 2-fold 

(figure 2.4a). Since the drop in aflatoxin synthesis could also have resulted from the 

inhibition of A. parasiticus growth, we next compared the dry-weights of the A. 

parasiticus mycelia exposed to 1 and 2 µg per mL of ARMs extract with the untreated 

control mycelia. As shown in figure 2.4b, addition of ARMs to the growth medium did 

not result any significant change in A. parasiticus dry weight, suggesting that inhibition 

of aflatoxin synthesis in A. parasiticus by ARMs was a direct effect and not a growth 

dependent effect. 
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2.4.5 ARMs metabolite fraction displays a different HPLC trace compared to prodigiosin 

fraction 

Our UV-Vis spectral analysis suggested that ARMs were synthesized by V. 

gazogenes upon exposure to aflatoxin. We then proceeded to confirm that this fraction 

(peak absorbance at 470 nm) was composed of metabolites of molecular masses that are 

different from the Vibrio’s prodigiosin fraction (peak absorbance at 530 nm). As shown 

in figure 2.5, HPLC traces showed that the prodigiosin fraction predominantly 

demonstrated the expected molecular weight of 324 D, corresponding to the known 

prodigiosin. The HPLC trace of ARMs on the contrary was clearly different, with a 

predominantly displayed molecular mass 232 D, which demonstrate that the metabolite 

fraction of ARMs was chemically different from the Vibrio’s prodigiosin fraction. These 

results suggest that the differential metabolite profile in response to aflatoxin exposure 

can occur either due to synthesis of new metabolites by V. gazogenes or due to 

breakdown of prodigiosins resulting in novel smaller molecules with aflatoxin synthesis 

inhibitory activity. 

2.4.6 ARMs inhibit A. parasiticus aflatoxin biosynthesis at the level of transcript 

accumulation 

The fungal growth and aflatoxin results then prompted us to investigate whether 

aflatoxin biosynthesis was inhibited at the level of transcript accumulation of aflatoxin 

genes. To conduct this analysis we performed a quantitative comparison of transcript 

accumulation of two genes nor-1, and ver-1 that encode two enzymes, Nor-1, Vbs and 

Ver-1 respectively involved in the aflatoxin biosynthetic pathway (Chanda, Roze et al. 
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2009). Activation of these genes in A. parasiticus occurs at 24h, and transcripts of all 

aflatoxin enzymes accumulate by 30h, when the fungus is grown in YES growth medium 

(Roze, Arthur et al. 2007). Hence we chose to examine the effects of ARMs extract on A. 

parasiticus at three different time-points, 24h, 30h and 40h, a time-point when aflatoxin 

is synthesized by the fungus at peak levels (Roze, Arthur et al. 2007). In addition to these 

genes, we also compared the transcript accumulation of the aflatoxin pathway regulator, 

aflR, at the same time points. As shown in figure 2.6, nor-1, ver-1 as well as the aflR 

genes transcript levels demonstrated ≥5 fold reduction in presence of ARMs extract 

compared to the vehicle control by 30h. Hence, our results suggest that ARMs extract 

reduces aflatoxin synthesis at the level of transcript accumulation. 

2.4.7 ARMs inhibit transcript accumulation of the secondary metabolism global 

regulator, laeA but not veA 

Since the regulatory network of the aflatoxin biosynthesis pathway is integral to 

the global network of secondary metabolism in A. parasiticus as described in a recent 

review by Brakhage (Roze, Arthur et al. 2007), we also proceeded to investigate whether, 

ARMs target the global regulation of secondary metabolism. One key global regulatory 

complex of fungal secondary metabolism is the VeA complex (Bayram, Krappmann et al. 

2008). Central to this complex is the cross-talk between the two global regulators, LaeA, 

a methyltransferase that is key to the epigenetic regulation of aflatoxin biosynthetic 

pathway (Bok and Keller 2004), and VeA, a light responsive regulator that migrates from 

cytoplasm to the nucleus in absence of light to form the VeA complex with LaeA and 

other components in the complex (Bayram, Krappmann et al. 2008). In this study we 

investigated whether ARMs affect transcript accumulation of either laeA or veA genes. 
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To our surprise we found that, while no significant changes occurred in veA transcripts, 

the laeA transcript accumulation was reduced by ~2 fold by 30h and ~4 fold by 40h 

(figure 2.7), suggesting that ARMs inhibit aflatoxin biosynthesis at least in part, through 

inhibition of LaeA. 

2.5 DISCUSSION 

Here we demonstrate the feasibility of a novel system for generation of aflatoxin 

biosynthesis inhibitors, a concept that is analogous to the generation of antibodies upon 

antigen exposure. Our data reveal that the estuarine bacterium V. gazogenes, upon 

aflatoxin exposure, produces a metabolite profile that is chemically different from 

untreated-cells. Upon isolation of the ARMs and applying them on the aflatoxin producer 

cells, we found that the metabolites inhibit aflatoxin biosynthesis at the levels of 

transcript accumulation. Based on our current study we propose two possible 

explanations underlying this inhibition (illustrated in the schematic in figure 2.7). One 

possible mechanism of inhibition is through the regulation of the laeA gene activation. 

The laeA transcripts dropped by 2-4 fold during 30h to 40h time points suggesting that 

ARMs inhibit the formation of the Velvet complex, a protein complex comprising LaeA 

protein that regulate fungal secondary metabolism (Bayram, Krappmann et al. 2008). 

Alternatively, it is also possible that in addition to laeA mediated inhibition ARMs inhibit 

the activation of aflatoxin genes directly. Fungal growth was not inhibited during the 

ARMs-mediated inhibition of aflatoxin biosynthesis, suggesting that the metabolites 

target secondary metabolism specifically.  Future studies will identify the molecule(s) 

within ARMs that results in the aflatoxin inhibition. From our current preliminary 

studies, we postulate that two or more compounds generated in response to aflatoxin 
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exposure act either complementarily or synergistically to inhibit aflatoxin synthesis 

inhibition. These collaborative effects will be determined in those functional 

characterization studies with the purified compounds. 

It is important to emphasize that specific aflatoxin inhibitory natural products that 

have been characterized to-date were reported primarily from terrestrial organisms whose 

ecological domains likely overlap with those of the aflatoxin producers. Examples 

include natural products and volatiles from plants (Cleveland, Carter-Wientjes et al. 

2009, Roze, Koptina et al. 2011, Chitarrini, Nobili et al. 2014), fungi (Ono, Sakuda et al. 

1997, Yoshinari, Noda et al. 2010, Hua, Beck et al. 2014) and bacteria (Jermnak, 

Chinaphuti et al. 2013, Wang, Yan et al. 2013, Kong, Chi et al. 2014). Our study provides 

the first evidence, to the best of our knowledge, of an organism that demonstrates the 

ability of synthesizing aflatoxin inhibitors, while not sharing ecological niches with 

aflatoxin producers at all. Also this is the first report, to the best of our knowledge, of a 

Vibrio-producing metabolite(s) that specifically inhibit aflatoxin biosynthesis without 

affecting fungal growth. It is possible that mycotoxin triggered synthesis of mycotoxin 

inhibitors is a phenomenon that is conserved in the Vibrio species. Alternatively, it is also 

possible that Vibrio gazogenes is a chemically-gifted organism that has genetically 

evolved with the rising mycotoxin levels in the environment with global changes in 

climate (Kolpin, Schenzel et al. 2014, Rangel, Alder-Rangel et al. 2015). 

The effect of ARMs mediated down-regulation of laeA gene, but not veA gene 

suggests that the metabolites target cellular signaling receptors that specifically regulate 

laeA gene expression. Since LaeA is a global regulator of secondary metabolism and 

influences several mycotoxin biosynthetic pathways (Keller, Turner et al. 2005), we 
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anticipate that aflatoxin inhibitor within ARMs will inhibit other mycotoxins as well. 

Hence, for our follow-up studies we will categorize these as secondary metabolism 

specific inhibitors instead denoting these as specific inhibitors against aflatoxin 

biosynthesis. 

Current investigations in our laboratory reveal that other fungal secondary 

metabolites trigger synthesis of metabolite fractions in V. gazogenes that demonstrate 

different HPLC traces compared to either prodigiosins or ARMs fractions. These results 

implicate the need to examine the regulation of Vibrio genes under different 

environmental signals. It appears from our studies that many areas of the Vibrio genome 

remain silent under standard laboratory growth conditions and can be activated as needed 

to generate metabolites that are relevant to the public health. Our future studies will shed 

light on these silent areas of the V. gazogenes genome that encode the biosynthesis of the 

secondary metabolism modulatory metabolites; the knowledge will enable us to clone 

these areas on plasmids and engineer them as needed with the goal of purifying these 

compounds in large quantities. 
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Table 2.1: List of PCR primers used for this study 
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Figure 2.1: Effect of Aflatoxin B1 exposure on Vibrio gazogenes growth: Growth 
comparisons were performed using comparisons of 600 nm absorbance values between 
untreated V. gazogenes cultures and cultures were supplemented with 10, 30, and 50 ppb 
of aflatoxin B1. Statistical significance of two-tailed p-values were determined using an 
unpaired t-test with sample size of 3 and significance set as p < 0.05. 
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Figure 2.2: Effect of aflatoxin B1 exposure on prodigiosin production: (A) UV-Vis 
spectral profile of a prodigiosin-rich metabolite fraction demonstrating peak absorbance 
at 530 nm. (B) Comparison of absorbance values at 530 nm, of methanol extracts from 
untreated V. gazogenes cultures and cultures were supplemented with 10, 30, and 50 ppb 
of aflatoxin B1. Statistical significance of two-tailed p-values were determined using an 
unpaired t-test, with n=3, and p < 0.05 as significance level. 
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Figure 2.3: Aflatoxin-response metabolites (ARMs) produced by the bacterium V. 
gazogenes during exposure to aflatoxin B1 (AFB1). (A) Representative flasks 
demonstrating the differences in appearance of untreated V. gazogenes cultures and the 
aflatoxin B1 supplemented cultures. (B) Comparison of UV-Vis profiles of the methanol 
extracts from untreated and supplemented V. gazogenes cultures. 
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Figure 2.4: Effect of ARMs on aflatoxin biosynthesis and fungal growth. (A) Effect on 
aflatoxin accumulation in the growth media: Left panel, a representative TLC plate 
providing a qualitative comparison of aflatoxin accumulation in the untreated culture and 
cultures that were supplemented with 1 and 2 µg/mL ARMs extract and the vehicle 
(DMSO). Right panel, semi-quantitative comparative comparisons of band intensities of 
aflatoxin B1 and aflatoxin B2. a, significant difference in band intensity compared to the 
vehicle control. (B) Effect on growth: Comparison of dry-weight measurements. Bars 
represent measurements relative to the dry-weight of untreated cells. Statistical 
significance of two-tailed p-values were determined using an unpaired t-test, with sample 
size of n = 3 and p < 0.05 set as level of significance.  
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Figure 2.5: Comparison of HPLC traces of ARMs extract and the prodigiosin fraction of 
V. gazogenes. 
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Figure 2.6: Effects of ARMs on Aspergillus parasiticus gene expression. (A) Comparison 
of transcript accumulation of aflatoxin-synthesis regulatory genes in A. parasiticus. 
mRNA levels for each gene were observed at 24 h (aflatoxin synthesis start point), 30 and 
40 h time points (aflatoxin synthesis is activated and reaches peak levels by 40 h). Black 
bars, cells grown in presence of ARMs (2 µg/mL), Gray Bars, DMSO (vehicle) control. 
(B) Comparison of transcript accumulation of two global regulators of secondary 
metabolism, veA and laeA at the same time-points. Statistical significance of difference in 
transcript accumulation between control and ARMs-treated cells were determined using 
an unpaired t-test with sample size of 3 and two tailed p < 0.05 set as level of 
significance. a, p < 0.05. 
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Figure 2.7: Schematic representation of the inhibitory effect of ARMs on aflatoxin 
biosynthesis: Current study demonstrates that ARMs inhibit aflatoxin biosynthesis in A. 
parasiticus at the level of gene expression. We hypothesize that the inhibition of aflatoxin 
genes as exemplified by the decreased nor-1, ver-1, and aflR transcripts in presence of 
ARMs can be the effect of one or both of the following: (1) inhibition of laeA expression, 
which in turn can have inhibitory impact on the activation of the aflatoxin genes, or (2) a 
dual inhibition caused by direct inhibition on aflatoxin gene cluster activation along with 
a laeA mediated inhibition. Red dotted arrows, regulatory roles established in previous 
studies, red solid lines, inhibitory effect, gray curved arrows, gene activation, gray solid 
line, schematic of the aflatoxin gene cluster showing relative positions of nor-1, ver-1, 
and aflR in the cluster, brown solid line, laeA gene. 
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CHAPTER 3 

COMPLETE GENOME SEQUENCE OF Vibrio gazogenes ATCC 439421 
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3.1 ABSTRACT 

Vibrio gazogenes ATCC 43942 has the potential to synthesize a plethora of 

metabolites in response to environmental triggers, which are of clinical and agricultural 

significance. The complete genomic sequence of Vibrio gazogenes ATCC 43942 is 

reported herein contributing to the knowledgebase of strains in the Vibrio genus. 

3.2 INTRODUCTION 

Vibrio gazogenes is an estuarine Gram-negative bacterium that is known for its 

ability to synthesize industrially relevant proteins such as amylases and proteases 

(Ratcliffe, Sanders et al. 1982), and bactericidal and fungicidal pigments, magnesidin A 

(Imamura, Adachi et al. 1994), prodigiosins, and cycloprodigiosins (Allen, Reichelt et al. 

1983). 

V. gazogenes ATCC 43942 was recently studied by our laboratory for its response 

to aflatoxin, a hepatocarcinogen and a mycotoxin that is produced from a group of 

filamentous fungi under the genus Aspergilli. The bacterium demonstrated the ability to 

generate a group of metabolites (named aflatoxin response metabolites, denoted as 

ARMs) that were able to inhibit aflatoxin synthesis in the aflatoxin producer, Aspergillus 

parasiticus (Gummadidala, Chen et al. 2016). Also, in our ongoing (unpublished) studies, 

we have consistently observed the ability of this Vibrio strain to degrade mycotoxins and 

generate a unique set of antibiotics that are active against multiple antibiotic resistant 

bacterial strains. These observations prompted us to categorize this bacterium as 

clinically and agriculturally significant, and have provided the rationale for sequencing its 

genome. 
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Genomic DNA extraction (10 – 20 µg) was performed using PureLink genomic 

DNA minikit (Invitrogen). The extracted DNA was quantified using Nanodrop 1000 

(Thermo Scientific) and quality of the DNA was assessed by running a 1% agarose gel 

with the DNA gel stain SYBR safe (Life Technologies) and visualized in a ChemiDoc 

MP system (Bio-Rad). DNA sequencing was performed on the Pacific Biosciences RS II 

platform. One SMRT cell, yielding 73,434 post-filtered polymerase reads and having an 

N50 read length of 26,245 bases and a mean read length of 16,358 bases, was used for 

assembly in Pacific Biosciences’s SMRT Analysis v2.3.0 package using the 

RS_HGAP_Assembly.2 protocol5. Quiver was subsequently used to polish the assembly. 

The finished genomic sequences were annotated with NCBI’s Prokaryotc Genome 

Annotation Pipeline. A high-quality finished version of the V. gazogenes genome is 

reported here as two circular chromosomes and one circular plasmid with a mean 

coverage of 185x with features as follows: 

(1) Chromosome 1 (denoted as Chr_1): size 3,471,064 bp; GC% 45.5; proteins 

2,988; rRNA 25; tRNA 87; ncRNA 4; Genes 3153; Pseudogenes 49, 

(2) Chromosome 2 (denoted as Chr_2): Chr_2; size 1,303,572 bp; GC% 44.9; 

proteins 1,102; tRNA 4; Genes 1,138; Pseudogenes 32, and 

(3) Plasmid (denoted as P_1): size 11,916 bp; GC% 45.2; proteins 22; Genes 23; 

Pseudogene 1. 

The utility of prodigiosins that are synthesized by V. gazogenes ATCC43942 

coupled with its ability to produce unique antibiotics and mycotoxin inhibitors under 

custom designed environmental settings make this strain ‘chemically gifted’. In this 
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context, its finished genomic sequence provides a necessary point of comparison with 

other V. gazogenes strains and bacterial species within the Vibrio genus for elucidation of 

the molecular factors that govern its unique metabolic profile. 

3.3 Nucleotide sequence accession numbers(s) 

The sequence of V. gazogenes ATCC 43942 has been deposited in NCBI 

GenBank under the accession no(s) that are as follows: CP018835, CP018836 and 

CP018837. 
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CHAPTER 4 

ACTIVATION OF AFLATOXIN BIOSYNTHESIS ALLEVIATED 

TOTAL ROS IN Aspergillus parasiticus1 
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4.1 ABSTRACT 

An aspect of mycotoxin biosynthesis that remains unclear is its relationship with 

the cellular management of reactive oxygen species (ROS). Here we conduct a 

comparative study of the total ROS production in the wild-type strain (SU-1) of the plant 

pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in 

which the aflatoxin biosynthesis pathway is blocked by disruption of its pathway 

regulator, aflR. We show that SU-1 demonstrates a significantly faster decrease in total 

ROS than AFS10 between 24 h to 48 h, a time window within which aflatoxin synthesis 

is activated and reaches peak levels in SU-1. The impact of aflatoxin synthesis in 

alleviation of ROS correlated well with the transcriptional activation of five superoxide 

dismutases (SOD), a group of enzymes that protect cells from elevated levels of a class of 

ROS, the superoxide radicals (O2
−). Finally, we show that aflatoxin supplementation to 

AFS10 growth medium results in a significant reduction of total ROS only in 24 h 

cultures, without resulting in significant changes in SOD gene expression. Our findings 

show that the activation of aflatoxin biosynthesis in A. parasiticus alleviates ROS 

generation, which in turn, can be both aflR dependent and aflatoxin dependent. 

4.2 INTRODUCTION 

Filamentous fungi synthesize and release a diverse array of secondary metabolites 

into their environment, many of which have profound impacts on agriculture, industry, 

environmental sustainability, and human health (Keller et al., 2005). Many compounds 

are used as medicines, including statins, penicillin, and other antibiotics. Many others, 

like aflatoxins and fumonisins, can be life threatening to humans and animals. Aflatoxin 
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B1 (AFB1), a highly carcinogenic secondary metabolite synthesized by a group of 

Aspergilli, is a life-threatening toxin causing significant morbidity and mortality 

worldwide, as well as billions of dollars in annual economic losses (Magnussen et al., 

2013). Due to the significant human and agricultural impacts of aflatoxin (AF), its 

biosynthetic pathway is one of the most characterized and widely studied models for 

understanding fungal secondary metabolism (Roze et al., 2011). 

The aflatoxin biosynthesis process is activated by several environmental cues and 

orchestrated by a complex regulatory network of more than 25 genes and 17 enzymatic 

steps (Brakhage et al., 2013; Yin et al., 2011; Yu et al., 2004; Chanda et al., 2009). The 

operation of this network is governed by the interactions of a set of global transcription 

factors, including LaeA and VeA (Brakhage et al., 2013; Kale et al., 2008; Bayram et al., 

2008; Calvo et al., 2004; Calvo et al., 2008; Duran et al., 2007). Upon receiving signals 

from cell surface receptors, these global transcription factors communicate with pathway-

specific transcription factors [examples include AflR (Cary et al., 2006) and GliZ (Scharf 

et al., 2012; Bok et al., 2006)] to activate specific aflatoxin biosynthesis genes. Many of 

the enzymes synthesized by this pathway then localize to specific vesicles known as 

toxisomes (Chanda et al., 2009; Chanda et al., 2010; Roze et al., 2011; Lim et al., 2014; 

Menke et al., 2013), which provide a platform for the completion of biosynthesis, 

sequestration, and export of aflatoxin to the environment (Chanda et al., 2009; Chanda et 

al., 2010; Roze et al., 2011; Lim et al., 2014; Menke et al., 2013).  

To manipulate secondary metabolism in fungi for the benefit of public and 

environmental health, it is essential to understand the motivation for a fungal cell to 

preserve such an energy-consuming metabolic process with enormously complex 
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molecular and cellular organization throughout the course of evolution. One of the most 

commonly hypothesized functions of fungal secondary metabolites is defense against 

other organisms in the same ecological niche. Antibacterial properties of secondary 

metabolites like penicillin and other beta-lactam antibiotics are well established in 

literature (Van Krimpen et al., 1987). Beyond antibacterial properties, reports from 

Rohlfs et al. (Rohlfs et al., 2007) suggest that aflatoxin and sterigmatocystin protect 

fungal cells from pests and insects. These studies all suggest that secondary metabolism 

provides fungi with a survival mechanism in nature. 

Several recent studies suggest that secondary metabolism is integrated with 

primary metabolism and its associated cellular mechanisms (Roze et al., 2011; Chanda et 

al., 2009; Linz et al., 2012; Roze et al., 2010), which implies that secondary metabolism 

may have a regulatory impact on other fungal cellular processes as well. One cellular 

process that appears to be associated with secondary metabolism in fungi is oxidative 

stress response. Recently, several basic leucine zipper (bZIP) transcription factors in 

filamentous fungi have been reported in the literature that not only regulate antioxidant 

genes participating in oxidative stress response, but are also associated with the 

regulation of secondary metabolism (Roze et al., 2011; Baidya et al., 2014; Hong et al., 

2013; Hong et al., 2013; Montibus et al., 2013; Reverberi et al., 2012; Montibus et al., 

2015; Yin et al., 2013). These reports are in line with previous reports (Jayashree et al., 

2000; Narasaiah et al., 2006; Reverberi et al., 2006; Reverberi et al., 2008) suggesting 

that oxidative stress induces aflatoxin synthesis in Aspergillus parasiticus. 

While these lines of evidence collectively demonstrate that the two cellular 

processes (aflatoxin biosynthesis and intracellular oxidative stress management) 
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communicate at different regulatory nodes and are co-regulated, the effect of aflatoxin on 

oxidative stress remains unclear. In this study we address this knowledge gap through a 

comparative study of total reactive oxygen species (ROS) output between the wild-type 

A. parasiticus and its mutant, AFS10, in which the aflatoxin pathway regulator gene, 

aflR, is disrupted (Cary et al., 2002; Ehrlich et al., 1999). In addition to measuring ROS, 

we also conducted a comparative assessment of superoxide dismutase (SOD) gene 

expression. SODs are conserved in eukaryotes and are synthesized in response to 

intracellular (O2
−) radicals (a type of ROS) generated as a byproduct of primary cellular 

functions (Fridovich 1975). To differentiate the aflatoxin-dependent effect on ROS 

generation from the possible genetic effects (of aflR disruption) we also conducted 

aflatoxin supplementation studies on AFS10. The results of this work provide direct 

evidence in support of the regulatory role of aflatoxin synthesis on total ROS output and 

explain the rationale for the co-regulation of oxidative stress with aflatoxin synthesis. 

4.3 MATERIALS AND METHODS 

4.3.1 Strains, media and growth conditions 

Aspergillus parasiticus wild type strain SU-1 (ATCC56775) and the aflR 

disrupted mutant, AFS10 (Ehrlich et al., 1999; Roze et al., 2007), were used for this 

study. Yeast extract sucrose (YES) (2% yeast extract, 6% sucrose; pH 5.8) was used as 

the liquid growth medium for the entire study for both strains. Fungal cells were grown 

for 24 h and 48 h by inoculating 107 spores per 100 mL of growth medium and 

incubating the cells at 29°C in a dark orbital shaker at 150 rpm. 
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4.3.2 Quantification of ROS 

Comparison of ROS concentrations between SU-1 and AFS10 was conducted 

spectrophotometrically using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) based on a 

previously described protocol (Chang et al., 2011). Equal weight (0.5 g) of mycelia from 

a 24 and 48 h culture was placed into 1 mL of freshly made 1 µM DCFH-DA in 

phosphate buffered saline (PBS). After 4 h of incubation in the dark at room temperature 

(25°C), the fluorescent yield of the DCFH-DA oxidation product, dichlorofluorescin 

(DCF), was measured using a Victor™ X3 2030 Multilabel Reader (PerkinElmer, 

Waltham, MA, USA) with an excitation/emission wavelength of 490/525 nm. 

4.3.3 Identification of Superoxide Dismutase genes 

Since functional characterization of the SOD genes in A. parasiticus has not yet 

been completed, a bioinformatics analysis was performed to identify SOD gene 

sequences to allow for a comparative expression analyses to address our hypothesis. The 

SOD genes analyzed in this study were identified by searching for “superoxide 

dismutase” in the accessible genome database (Yu et al., 2008) of A. flavus, a close 

relative of A. parasiticus that exhibits ~98–100% amino-acid sequence identity with A. 

parasiticus proteins that have been sequenced (Roze et al., 2011). The search rendered 

five annotated amino-acid sequences which were then queried in the PROSITE database 

(Sigrist et al., 2013) against the 390 available SOD genes to investigate whether they 

contained (a) the conserved functional domains typical of SODs, or (b) motifs with a high 

probability of occurrence that are commonly present in the SOD genes. Details of these 

sequences and queries can be found in table 4.1. 
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4.3.4 RNA extraction, purification and cDNA synthesis 

Total RNA was extracted from cells harvested using a TRIzol-based (TRIzol 

Reagent; Invitrogen, Carlsbad, CA, USA) method previously described (Chanda et al., 

2009). Within 24 h of extraction, RNA cleanup was performed using a Qiagen RNEasy 

Cleanup Kit (Qiagen, Valencia, CA, USA), and samples were stored at −80°C. Total 

RNA was then reverse transcribed to cDNA using iScript™ cDNA Synthesis Kit 

(BioRad Laboratories, Hercules, CA, USA). All samples were checked for concentration 

and purity after each step using a NanoDrop 2000 Spectrophotometer (Thermo-Fisher 

Scientific, Waltham, MA, USA). All cDNA samples were stored at −20°C until 

subsequent PCR quantification. 

4.3.5 Quantitative PCR Assays 

Expression of SOD genes was examined by quantitative PCR assays (qPCR) 

using SsoAdvanced Universal SYBR Green Supermix (BioRad Laboratories, Hercules, 

CA) and gene specific forward and reverse primers (table 4.2) designed using Primer3 

online software (Ye et al., 2012). Reactions were performed per BioRad SYBR Green 

protocol guidelines and quantified using a CFX96 thermal cycler (Bio-Rad Laboratories, 

Hercules, CA, USA). 

The 18s ribosomal DNA was used as a reference in the gene expression 

experiments, with β-tubulin used as a positive control rather than a reference gene. This 

use of β-tubulin in this manner provided proof of consistent quantification across all 

experiments and revealed an expected range of variation within the protocol. Expression 

of each SOD gene was obtained from the threshold cycle values normalized against 18s 
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rDNA in each sample. All RT-PCRs were performed in triplicate for each gene per 

sample. For quantitative comparison of gene expression, the expression values for each 

target gene at the early stationary phase (48 h) were expressed as the fold change relative 

to the 24 h time point to reflect changes associated with the initiation of aflatoxin 

biosynthesis, which begins at 30 h (Roze et al., 2015). All data analysis was performed 

using CFX Manager software (Version 3.1, Bio-Rad Laboratories, Hercules, CA, USA, 

2012). 

4.3.6 Aflatoxin supplementation experiments 

For aflatoxin supplementation studies, 0.5 g of AFS10 mycelia were collected 

from YES media at 24 and 48 h and each placed in 12-well trays containing 1 mL of their 

culture media. Total aflatoxin (in 70% methanol solution) isolated from an SU-1 culture 

using our standard chloroform-methanol isolation procedure (Gummadidala et al., 2017) 

was added to each sample well at a final concentration of 50 ppm. The control mycelia 

were supplemented with an equal volume of 70% methanol solution. After a 4 h 

incubation, mycelia were transferred to 1 mL of 1 µM DCFH-DA in PBS substrate for an 

additional 1 hour incubation in the dark before being measured (in triplicate) for DCF 

fluorescence. Aflatoxin uptake into the mycelia during the incubation period was 

quantified by measuring total percent removal of aflatoxin from the medium every hour 

until 4 h and by measuring the total accumulation of aflatoxin in the mycelium in parallel, 

after 4 h. Percent removal of aflatoxin from the medium was calculated as follows: 

Percent removal = ((Initial total aflatoxin in the supplementation medium − total 

aflatoxin in the medium at a time point)/Initial total aflatoxin in the supplementation 

medium) × 100. Aflatoxin was quantified in the medium as described below. Aflatoxin 
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accumulation in the mycelium was measured after washing three times with PBS buffer 

followed by extracting aflatoxin from the mycelium using a chloroform: methanol 

procedure as described previously (Roze et al., 2007). Aflatoxin in the extract was then 

measured using an enzyme-linked immunosorbent assay (ELISA). Dead cells of AFS10 

obtained upon autoclaving at 121°C for 15 min were used in the uptake experiments as 

controls for free diffusion systems. Loss of viability in these cells was confirmed prior to 

experimentation by confirming their inability to grow in fresh growth medium. 

4.3.7 Aflatoxin quantification 

Qualitative comparisons of aflatoxin accumulation in the growth media were 

performed using thin-layer chromatography (TLC) as described previously (Hong et al., 

2008). Quantification of aflatoxin for the aflatoxin uptake experiments was performed 

using a Veratox for Aflatoxin ELISA kit (Neogen Food Safety, Lansing, MI, USA) and 

measured on a Stat Fax 4700 Microstrip Reader (Awareness Technologies, Palm City, 

FL, USA). 

4.3.8 Satistical analysis 

Statistical analyses for this study were conducted using the GraphPad Prism 

Software (GraphPad, CA, USA). The statistical significance of two-tailed p-values were 

determined using an unpaired t-test, using n = 3 and p < 0.05. For the gene expression 

studies, a two-fold increase or decrease in transcript level was our cutoff for comparing 

expressions between two genes. 
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4.4 RESULTS 

4.4.1 SU-1 demonstrates a significantly larger decrease in total ROS compared to AFS10 

between 24h and 48h 

Aflatoxin biosynthesis is activated in SU-1 at 24 h under our culture conditions 

and reaches peak levels by the start of the stationary phase at 48 h (Skory et al., 1993; 

Chanda et al., 2009). Under these conditions aflatoxin biosynthesis is not activated in 

AFS10. As shown in figure 4.1a, during the 24h – 48h time window, aflatoxin 

accumulation in the growth medium was observed and aflatoxin genes were activated in 

SU-1 but not in AFS10. The genes nor-1 and ver-1 were chosen as representative 

aflatoxin genes that demonstrated drastic increases in expression similar to previously 

reported semi-quantitative analysis of transcript and protein analysis (Roze et al., 2007). 

Quantitative comparison of total ROS (Dichlorodihydrofluorescein [DCF] fluorescence 

measurements shown in Figure 4.1b) shows that at 24 h both strains demonstrate similar 

levels of total ROS, but by 48 h the total ROS decreased at a significantly higher rate in 

SU-1 than in AFS10. This demonstrated an association between the activation of 

aflatoxin biosynthesis and a decrease in total ROS, which may be attributable to either 

the presence of aflatoxin or the regulatory role of aflR. 

4.4.2 Higher total ROS in AFS10 compared to SU-1 at 48h associates with significant 

differences in SOD gene expression 

4.4.2.1 Bioinformatics analysis of SOD genes 

Since SOD genes are synthesized in eukaryotes in response to intracellular O2
− 

radicals (a type of ROS) generated as a byproduct of primary cellular functions 
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(Fridovich 1975), we investigated whether higher ROS at 48 h in AFS10 is correlated 

with the transcriptional activation of SOD genes. As a first step to do so we initiated a 

search for SOD genes within the available genome database of a closely related species, 

A. flavus (Yu et al., 2008) and identified five amino acid sequences (table 4.1). Out of 

these five sequences, two different sequences of copper–zinc SOD genes are annotated in 

the database as CuZnsod1 and cytosolic CuZnsod, two sequences of iron SOD are 

annotated as Fesod and FesodA, and one manganese SOD is annotated as Mnsod. These 

five sequences were queried against the PROSITE database (Sigrist et al., 2013) to verify 

whether they contained any of the conserved functional domains or patterns that are 

present in the well-characterized SODs within the database. 

As shown in table 4.2A, two of these sequences contained superoxide dismutase 

(SOD) signatures. CuZnsod1 had two typical CuZn SOD signatures. The conserved 

sequence (AFHVHQfGDnT) matched with the consensus pattern, [GA]-[IMFAT]-H-

[LIVF]-H-[S]-x-[GP]-[SDG]-x-[STAGDE], for signature 1, where 2 H’s are copper 

ligands. Similarly, conserved sequence (GNAGaRpACgvI) matched with the consensus 

pattern, G-[GNHD]-[SGA]-[GR]-x-R-x-[SGAWRV]-C-x(2)-[IV], for signature 2, where 

C is involved in a disulfide bond. Mnsod contained the conserved sequence, 

DmWEHAYY, corresponding to manganese and iron SOD signature. This signature 

matched with the consensus pattern, D-x-[WF]-E-H-[STA]-[FY](2), where D and H are 

manganese/iron ligands. 

The PROSITE database was then used to investigate whether the three other 

sequences that did not contain typical SOD motifs contained regions that have high 

probability of occurrence (frequent patterns) in SODs. The remaining three amino acid 
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sequences displayed the four patterns (an N-myristoylation site, a Casein kinase II 

phosphorylation site, and N-glycosylation site, and a Protein kinase C phosphorylation 

site) that are the most frequently present within the 390 SOD genes available in 

PROSITE database, suggesting strongly that these are SOD sequences (table 4.2B). 

4.4.2.2 Expression profiles of SOD genes 

The gene expression of all five SODs was examined in both SU-1 and AFS10 at 

24 h and 48 h post-inoculation in yeast extract sucrose (YES). Quantitative comparison of 

the transcript levels between 24 h and 48 h, with levels normalized to 24 h (raw 

expression data relative to 18s rRNA shown in Figure S1) are shown in figure 4.2 and 

the list of primers used are mentioned shown under table 4.3. The data suggest that SOD 

expression profile in this fungus is growth phase dependent. Hence, while the expressions 

of Fesod and CuZnsod1 are higher in 24 h cultures (corresponding to the exponential 

growth phase) the Mnsod expression is significantly higher in the 48 h cultures 

(corresponding to the stationary growth phase). As seen in figure 4.2, AFS10 displayed a 

significantly larger increase in Mnsod expression from 24 h to 48 h (~70-fold increase in 

AFS10 versus a ~40 fold increase in SU-1). Additionally, CuZnsod expression that 

remained constant in SU-1 showed a significant increase from 24 to 48 h in AFS10. No 

significant difference was observed between SU-1 and AFS10 for genes Fesod and 

CuZnsod1. Our results, therefore, demonstrate an association between higher ROS levels 

in AFS10 (compared to SU-1) and absence of aflatoxin biosynthesis during the 24 h–48 h 

time window in AFS10 with the significantly larger increases (compared to SU-1) in 

Mnsod and CuZnsod transcripts from 24 h to 48 h. 
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4.4.3 Aflatoxin supplementation to AFS10 growth medium changes total ROS output 

without changing the SOD transcript levels 

The significantly larger decrease in total ROS in SU-1 compared to AFS10 could 

either be aflatoxin dependent, aflR dependent, or both. To examine if total ROS 

production is in-part aflatoxin dependent, we investigated whether aflatoxin 

supplementation to AFS10 impacts the total ROS levels. The results from this experiment 

are shown in figure 4.3. A 4 h supplementation of 24 h mycelia with total aflatoxin 

isolated from an SU-1 growth medium resulted in a significant decrease of total ROS 

(figure 4.3a). In contrast, the 4 h aflatoxin supplementation to 48 h AFS10 mycelia 

significantly increased the total ROS. To understand this differential effect of aflatoxin 

supplementation on the 24 h and 48 h AFS10 cultures, we conducted an examination of 

aflatoxin uptake by the mycelium during the 4 h time-period. As shown in figure 4.3b, 

the percentage removal of aflatoxin per unit mass of mycelium by the end of 4 h was 

significantly higher for 48 h cultures than 24 h cultures. This data also agreed with the 

aflatoxin accumulation in the mycelia, which demonstrated a significantly higher 

accumulation of aflatoxin in 48 h cultures than in 24 h cultures. To examine whether the 

aflatoxin accumulation was a free diffusion versus an active uptake mechanism by the 

mycelium, we conducted a similar experiment with equal masses of dead AFS10 cultures 

obtained upon autoclaving the cultures. Our results demonstrate that while the free 

diffusion of aflatoxin from the medium to the immersed dead cells resulted in a faster 

removal of aflatoxin from the medium, the aflatoxin could not be retained in the dead 

mycelia unlike the live cells, when taken out of the medium and washed. Collectively the 

gradual increase in aflatoxin removal from the medium (unlike the dead cells) and the 
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ability of retaining the aflatoxin in the mycelium suggests an active uptake mechanism of 

aflatoxin by the cells. The significantly higher uptake of aflatoxin in 48 h cultures than 

the 24 h cultures suggest that the differential effects of the aflatoxin supplementation on 

total ROS in the 24 h versus 48 h cultures are associated with the differential levels of 

aflatoxin uptake by the mycelia of these ages. 

Finally, we also examined whether aflatoxin supplementation resulted in changes 

in the expression levels of the SOD genes either in 24 h or 48 h cultures. Contrary to the 

total ROS readings, there were no significant changes in SOD expression that were 

attributable to AF supplementation (figure 4.3c), thereby suggesting the possibility that 

aflatoxin supplementation induced changes in the total ROS are acute biochemical 

effects. 

4.5 DISCUSSION 

This study provides the first direct demonstration of the regulatory role of a 

secondary metabolite on a cellular process of the producer’s oxidative stress 

management. It also can now explain the previous reports on the cross-talk between 

oxidative stress and secondary metabolism (Jayashree et al., 2000; Narasaiah et al., 2006; 

Reverberi et al., 2006; Reverberi et al., 2008). Based on our current findings and 

previously published literature, we propose here a ROS management model for aflatoxin 

producers (illustrated in figure 4.4). According to this model, aflatoxin biosynthesis 

protects cells against ROS accumulation from at least three different sources: (a) primary 

metabolic processes, (b) secondary ROS generated from aflatoxin biosynthesis, as 

proposed previously by Roze et al. (Roze et al., 2015), and (c) ROS generated upon 
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aflatoxin uptake by cells during the stationary phase of growth (aflatoxin 

supplementation data from 48 h AFS10 cultures in the current study). The aflatoxin-

dependent protection occurs in one or a combination of the following ways: (a) utilization 

of ROS in the biochemical steps of the biosynthesis pathway (Narasaiah et al., 2006), (b) 

aflatoxin-dependent reduction of ROS in cells at exponential growth phase (aflatoxin 

supplementation data from 24 h AFS10 cultures in the current study) and (c) aflR-

dependent reduction of ROS (current study) possibly through its gene regulatory impacts 

outside the aflatoxin pathway gene cluster (Price et al., 2006; Yin et al., 2012). Our data 

support the likelihood that disruption of aflR blocks all the three modes of aflatoxin-

dependent protection, leading to a higher accumulation of super-oxide radicals in AFS10 

compared to SU-1. This can explain the increased demand for SOD activation and the 

higher SOD transcript levels in AFS10 than in SU-1. 

To address the direct effect of aflatoxin on total ROS, we designed a 4 h 

supplementation experiment to compare the individual effects of the supplementation on 

the 24 h and the 48 h AFS10 cultures. We understand based on previous literature (Roze 

et al., 2007; Banerjee et al., 2014; Chanda et al., 2009) that 24 h cultures and 48 h 

cultures (under our standard growth conditions), are very different physiological systems; 

24 h cultures demonstrate no secondary metabolite synthesis and in 48 h cultures 

secondary metabolite synthesis occurs at peak levels. The 4 h time was optimized from 

initial uptake experiments in which we noticed no significant increase in the growth of 

the mycelia until 4 h under the given experimental conditions (data not shown). We 

reasoned that supplementation beyond 4 h would result in adaptation of fungal cells and 

that would not allow us to observe the acute effects as described in this study. 
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It is speculated that fungal toxisomes, which are sites for the synthesis and 

compartmentalization of secondary metabolites (Chanda et al., 2009; Roze et al., 2011), 

receive input from peroxisomes and mitochondria as well as from the secretory and Cvt 

vesicle transport pathways (Roze et al., 2011). A significant increase in the mitochondrial 

SOD, MnSOD, at 48 h suggests that it is primarily responsible for dismutating the 

superoxides during the stationary phase. Previous proteomic data on fungal toxisomes in 

A. parasiticus (Linz et al., 2012) demonstrated an enrichment of superoxide dismutases, 

especially MnSOD, within the toxisomes as well. Catalases also present in the tosixomes 

then convert the hydrogen peroxide product of the dismutation reactions into oxygen and 

water. The data shown here correspond increased MnSOD with ROS levels after the 

initiation of aflatoxin biosynthesis support the possibility that superoxides are 

compartmentalized into fungal toxisomes in addition to the mitochondria, and become 

available for incorporation into secondary metabolite biosynthetic pathways, including 

aflatoxin synthesis, in addition to dismutation by SODs. We emphasize here that while 

the SOD expression profiles are closely and independently associated with total ROS and 

the activation of aflatoxin biosynthesis, our data (figure 4.3c) do not support aflatoxin as 

a direct regulator of SOD gene transcription, thereby suggesting that additional 

regulator(s) work in concert with AflR to regulate SOD gene expression. An example of 

such a regulator is the bZIP transcription factor AtfB (Roze et al., 2011; Wee et al., 

2017), which is in part one regulator of the SODs and the cellular response to 

intracellular oxidative stress (Hong et al., 2013; Hong et al., 2013; Wee et al., 2017) that 

binds to aflR gene promoter and physically interacts with the AflR (Miller et al., 2005; 

Roze et al., 2004). 
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One limitation of this study is the lack of an appropriate methodology for clean 

biochemical measurements specific for superoxide radicals (O2
−) within Aspergillus cells. 

Commercially available small molecules like DMPO, that can successfully trap O2
− 

within mammalian and yeast cells, have conventionally been used for such O2
- 

quantifications. However, these small molecules fail to enter Aspergillus cells (data not 

shown). Within the cell, toxisomes are very dynamic systems that are continuously 

exporting protein and metabolite contents to the extracellular environment (Chanda et al., 

2010), at which time any present superoxide radicals would be detectable by molecules 

such as DMPO. Therefore, unless the extremely unstable O2
− radicals are incorporated 

into the location of aflatoxin synthesis within toxisomes, as in case of SU-1 (but not in 

AFS10), commercial cellular stains like MitoSOX or CellROX cannot provide a true 

overall quantification of the total O2
− radicals or total ROS through cellular imaging 

experiments as done for many mammalian cells, and will lead to inaccurate 

interpretations. The protocol used in these experiments is based on a methodology 

previously established by Chang et al. (Chang et al., 2011). The method allows the 

substrate DCFH-DA to react with the total ROS generated within mycelia and form the 

fluorescent marker DCF that can then be quantified spectrophotometrically. While we 

acknowledge the technical limitations of the DCFH-DA probe in providing an accurate 

quantification of superoxides and total ROS (Kalyanaraman et al., 2012), we reason that 

our experimental design, being dependent of relative ROS levels rather than accurate 

ROS quantifications, was able to circumvent these challenges and therefore our 

interpretations on relative ROS levels were not impacted. 
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In conclusion, our findings establish the foundation for a long-term study that will 

investigate the molecular, cellular, and biochemical mechanisms underlying the 

differential effects of aflatoxin on ROS accumulation in cells that are in an exponential 

growth phase versus those in a stationary phase. We hypothesize based on these findings 

that secondary metabolites have a regulatory role in the cellular coordination of 

secondary metabolism and oxidative stress response in filamentous fungi. Our future 

studies will shed more light on revealing the complexity of such coordination and thereby 

help identify novel targets for the manipulation of secondary metabolism. 
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Table 4.1: Amino acid sequences of the SODs analyzed in the study. The names of the 
SODs as annotated in the gene bank database and their accession numbers are mentioned 
above each sequence within the shaded rows. 
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Table 4.2: A bioinformatics analysis of the SOD annotated amino acid sequences. (A) 
Results from a search of the conserved domain signatures of SODs. Two sequences, 
CuZnSOD1 and MnSOD (shaded cells) show the typical SOD signatures. (B) (i) Results 
from a study of the detection of the most frequent patterns of the SODs available in the 
PROSITE database. A total of 390 SOD sequences were analyzed. The cells with the four 
most frequent patterns are highlighted in the table. (ii) Results from the analysis of the 
four most frequent patterns within the sequences (CuZnSOD cytosolic, FeSOD, 
FeSODA) that did not show conserved domain signatures.  
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Table 4.3: List of primers used in the study. 
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Figure 4.1: Decrease of total ROS during activation of aflatoxin biosynthesis. (a) 
Comparison of Figure 1. Decrease of total ROS during activation of aflatoxin 
biosynthesis. (a) Comparison of (i) aflatoxin accumulation and (ii) Gene expression 
levels relative to 24 h of three aflatoxin pathway aflatoxin accumulation and (ii) Gene 
expression levels relative to 24 h of three aflatoxin pathway genes in SU-1 and AFS10. 
(b) Comparison of total ROS at 24 h and 48 h. The error-bars represent genes in SU-1 
and AFS10. (b) Comparison of total ROS at 24 h and 48 h. The error-bars represent 
standard error of the mean. The two-tailed p-value was determined using unpaired t-test 
(GraphPad standard error of the mean. The two-tailed p-value was determined using 
unpaired t-test (GraphPad statistical software). #, Significant difference of transcript 
levels between 24 h and 48 h (p-value < 0.05, statistical software). #, Significant 
difference of transcript levels between 24 h and 48 h (p-value < 0.05, n = 3); * Significant 
difference of total ROS between SU-1 and AFS10 (p-value < 0.05, n = 3). 
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Figure 4.2: Comparison of SOD gene expression in SU-1 and AFS10. Quantitative PCR 
(qPCR) comparison of SOD gene expression in the two strains at 24 and 48 h of culture 
growth. All expression quantification were conducted in triplicate. For each gene the 
expression value was normalized against the 18s rRNA reference gene and compared to a 
beta-tubulin control. The expression values for each target gene at early stationary phase 
(48 h) were expressed as the fold change relative to 24 h time point. Fold changes ≥2.0 
were considered up- or down- regulated. All data and statistical analysis (Student’s t-test) 
were performed using CFX Manager software (Bio-Rad Laboratories). Compared to 24 h 
gene expression, FeSOD showed a significant decrease in both the wild-type (2.1-fold; p 
= 0.003) and AFS10 (3.9-fold; p < 0.001); FesodA showed no significant change for 
either strain; CuZnsod expression did not change in the WT, but showed a 2.1-fold 
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increase (p = 0.003) in AFS10; CuZnsod1 showed a large, significant decrease in 
expression for both the WT (22.4-fold; p = 0.001) and AFS10 (26.4-fold; p < 0.001); 
Mnsod had a dramatically significant 36.2-fold increase in gene expression in the WT (p 
< 0.001), and an even greater 69.8-fold increase in AFS10 (p < 0.001) compared 24 h 
expression. (Raw gene expression data is included as Figure 4.5). * Indicates statistically 
significant difference from respective 24 h gene expression; p ≤ 0.05. 
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Figure 4.3: Aflatoxin supplementation to AFS10. (a) Effect on total ROS. A quantitative 
comparison of ROS in AFS10 supplemented with 50 ppm aflflatoxin (in 70% methanol) 
and a 70% methanol control was conducted. Total ROS was quantiffiied at 24 h and 48 h 
of growth + 4 h of incubation in 1 µµM 20,70-dichlorofluorescein diacetate (DCFH-DA) 
in phosphate buffered saline (PBS) substrate with 2′,7′-dichlorofluorescein diacetate 
(DCFH-DA) in phosphate buffered saline (PBS) substrate with the the corresponding AF 
concentration. Error-bars represent SEM. (*) denotes statistically significant 
corresponding AF concentration. Error-bars represent SEM. (*) denotes statistically 
significant difference (p < 0.05; n = 3) in ROS compared to the 70% methanol control for 
the corresponding growth difference (p < 0.05; n = 3) in ROS compared to the 70% 
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methanol control for the corresponding time. (b) Cellular uptake of aflatoxin during 
aflatoxin supplementation. (i) Percent removal of aflatoxin growth time. (b) Cellular 
uptake of aflatoxin during aflatoxin supplementation. (i) Percent removal from the 
supplementation medium in live cells of 24 h and 48 h AFS10. The percent removal was 
of aflatoxin from the supplementation medium in live cells of 24 h and 48 h AFS10. The 
percent calculated at every hour until 4 h to compare the aflatoxin removal pattern by live 
cells with the dead removal was calculated at every hour until 4 h to compare the 
aflatoxin removal pattern by live cells cells that allow free diffusion from the medium 
into the cells. (ii) Percent aflatoxin accumulation in with the dead cells that allow free 
diffusion from the medium into the cells. (ii) Percent aflatoxin the mycelium of 24 h and 
48 h cultures. Aflatoxin in the mycelia of live cells was compared to the accumulation in 
the mycelium of 24 h and 48 h cultures. Aflatoxin in the mycelia of live cells was dead 
cells. Error-bars represent SEM. a, statistically significant difference (p < 0.05; n = 3) in 
aflatoxin compared to the dead cells. Error-bars represent SEM. a, statistically significant 
difference (p < 0.05; n levels with 0 h, b, statistically significant difference (p < 0.05; n = 
3) in aflatoxin levels between 24 h = 3) in aflatoxin levels with 0 h, b, statistically 
significant difference (p < 0.05; n = 3) in aflatoxin levels and 48 h cultures, c, statistically 
significant difference (p < 0.05; n = 3) in aflatoxin levels between between 24 h and 48 h 
cultures, c, statistically significant difference (p < 0.05; n = 3) in aflatoxin levels live and 
dead cells at a particular time-point. (c) Comparison of SOD gene expression in aflatoxin 
between live and dead cells at a particular time-point. (c) Comparison of SOD gene 
expression in supplemented and control AFS10. qPCR comparison of SOD gene 
expression in the control and 4 h aflatoxin supplemented and control AFS10. qPCR 
comparison of SOD gene expression in the control aflatoxin supplemented cells. The 
gene expression values were normalized against the 18s rRNA and 4 h aflatoxin 
supplemented cells. The gene expression values were normalized against the 18s 
reference gene. Fold changes 2.0 were considered up- or down-regulated. All data and 
statistical analysis (Student’s t-test) were performed using CFX Manager software (Bio-
Rad Laboratories). 
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Figure 4.4: Proposed model for total ROS management in A. parasiticus. Based on our 
current findings and previous reports we propose that aflatoxin-dependent protection 
occurs in one or a combination and previous reports we propose that aflatoxin-dependent 
protection occurs in one or a combination of the following ways: (a) utilization of ROS in 
the biochemical steps of the biosynthesis pathway (Narasaiah et al., 2006), (b) aflatoxin-
dependent reduction of ROS in cells at exponential growth phase (current study) of the 
following ways: (a) utilization of ROS in the biochemical steps of the biosynthesis 
pathway (b) aflatoxin-dependent reduction of ROS in cells at exponential growth phase 
(current study) and (c) aflR- dependent reduction of ROS (current study) possibly 
through its gene regulatory impacts outside the aflatoxin pathway gene cluster (Price et 
al., 2006; Yin et al., 2012). Aflatoxin dependent biochemical processes that sequester 
ROS still remain uncharacterized (green dashed arrow). Pink arrows indicate the sources 
of ROS accumulation. These include ROS generation from primary metabolic processes, 
secondary ROS generated from aflatoxin biosynthesis (Roze et al., 2015), and ROS 
generated upon aflatoxin uptake by cells during stationary phase of growth (based on 
aflatoxin supplementation data from 48 h AFS10 cultures in the current study). The 
mechanisms that result in ROS accumulation upon cellular uptake of aflatoxin remains 
uncharacterized (pink dashed arrow). The model can now explain the physiological need 
of the cells to co-regulate secondary metabolism (in this case, aflatoxin biosynthesis) and 
oxidative stress response through the bZIP proteins (Roze et al., 2011; Baidya et al., 
2014; Hong et al., 2013; Hong et al., 2013; Montibus et al., 2013; Reverberi et al., 2012; 
Montibus et al., 2015; Yin et al., 2013). Red arrows indicate the contributions of the 
current study. The molecular mechanism aflR-mediated regulation of SOD genes remains 
uncharacterized (red dashed arrow) and will be investigated in our follow up studies. 
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Figure 4.5: Raw expression data of the SOD genes in SU-1 and AFS10. qPCR 
comparison of SOD gene expression in the two strains at 24 h and 48 h of culture growth. 
All expression quantifications were conducted in triplicate. For each gene the expression 
value was normalized against and 18s rRNA reference gene and compared to a β-tubulin 
control  
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CHAPTER 5 

Vibrio gazogenes: A NOVEL TOOL TO COMBAT THE PATHOGEN, 

Aspergillus flavus1 
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5.1 ABSTRACT 

Aspergillus flavus is the most virulent and second most important Aspergillus 

species causing human infections ranging from hypersensitivity reactions to invasive 

infections (Hedayati et al., 2007). The Aspergillosis caused by A. flavus has a 90% 

mortality rate primarily due to the development of multi drug resistance. A. flavus also 

produces aflatoxins that contaminate food supplies globally and which when consumed 

lead to hepatocellular carcinoma. Biological controls were proven to be most effective in 

inhibiting aflatoxins and aflatoxin producing fungi. Vibrio gazogenes was proven to 

synthesize antifungal and antiaflatoxin metabolites. In this study we treated A. flavus 

cultures with 16 million V. gazogenes cells and observed >99% significant decrease in 

aflatoxin levels in the first generation and ~40% decrease of aflatoxin levels in the second 

generation of A. flavus cultures. The dead and live V. gazogenes cells have similar 

aflatoxin inhibitory effects that were specific to V. gazogenes and not to other gram-

positive or gram-negative bacterium. Infecting corn kernels with A. flavus in the presence 

of bacterium significantly decreased the fungal conidial growth by 80% and aflatoxin by 

>98%. Treating drosophila flies with V. gazogenes prior to A. flavus infection increased 

their survival (~40%). Using confocal laser, scanning electron and transmission electron 

microscopies we observed the uptake of the bacterium by the fungus into endosome like 

compartments. RT-PCR data revealed controversial gene expressions of aflatoxin 

pathway genes and global secondary metabolite regulatory genes in the presence of live 

and dead V. gazogenes. These data suggest that the live and dead V. gazogenes aflatoxin 

inhibitory mechanisms are different. The data also uncover the yet unstudied concept that 

V. gazogenes mechanism of aflatoxin inhibition is not at the gene level but is at the 
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cellular level. Finally our study has discovered a novel tool (Vibrio gazogenes) to inhibit 

the aflatoxin production and pathogenicity of plant and human pathogen Aspergillus 

flavus. 

5.2 INTRODUCTION 

The fungus Aspergillus flavus is a saprophyte, growing in humid environments 

with pathogenic ability causing aspergillosis in immuno-compromised humans effecting 

the skin, oral mucosa and subcutaneous tissues (Hedayati et al., 2007). Furthermore, A. 

flavus is the most virulent and second most important Aspergillus species causing human 

infections ranging from hypersensitivity reactions to invasive infections (Hedayati et al., 

2007). According to the centers for disease control and prevention (CDC) approximately 

4.8 million cases of aspergillosis were diagnosed worldwide and A. flavus is the second 

most leading cause. Most A. flavus strains are susceptible to antifungal therapy but the 

minimum inhibitory concentrations are atleast two fold higher than for other Aspergillus 

species (Krishnan et al., 2009). Furthermore, recent discoveries revealed the presence of 

active multi drug resistant genes in A. flavus strains increasing their potential for drug 

resistance and increased pathogenicity (Tobin et al., 1997) (Van Der Linden et al., 2011). 

A. flavus is also a plant pathogen and releases aflatoxins that are secondary 

metabolites and aflatoxin B1 had been categorized as class 1A human carcinogen by the 

International Agency of Research on Cancer (IARC). Aflatoxins contaminate a wide 

range of crops, produce, food, nuts, cereal, milk, juices, homes, wood, etc., and can be 

ingested into intestines and enter systemic circulation causing aflatoxicosis and liver 

cancer. Aflatoxin B1 synthesized by A. flavus is extremely stable (Garcia et al., 1994) at 
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temperatures greater than 150OC maintained for 30 minutes (Raters and Matissek 2008) 

and so cannot be detoxified by cooking or autoclaving. Therefore aflatoxins pollute many 

food groups that are ingested by humans and animals. Most common methods used in 

agriculture to reduce aflatoxin contamination are expensive, time consuming and have 

low efficiency with limited success rates. Novel therapies are required to fight against A. 

flavus strains and inhibit both its pathogenicity and aflatoxin production without affecting 

the host physiology. In their zeal to find new anti-fungal and anti-aflatoxin agents 

scientists have turned towards plant and microbe derived compounds especially from 

organisms that live in aflatoxin induced environments (Holmes et al., 2008). 

Vibrio gazogenes is a marine gram-negative bacterium notoriously known for its 

synthesis of antifungal pigments (Darshan and Manonmani 2015). Studies have shown 

that when V. gazogenes comes in contact with aflatoxin, the toxin induces V. gazogenes 

to synthesize antifungal and anti-aflatoxin metabolites termed aflatoxin responsive 

metabolites (ARMs). ARMs are responsible for decreasing 60% of aflatoxin by inhibiting 

the aflatoxin biosynthetic pathway at the gene level (Gummadidala et al., 2016). But 

various studies have shown that when the bacterium and fungus (A. flavus or A. 

parasiticus) have been co-cultured then the aflatoxin production was inhibited by greater 

than 95% (Chang and Kim 2007, Wang et al., 2013). Also Lactobacillus pentosus and 

Lactobacillus beveris bacteria have been successfully used to eliminate aflatoxin B1 from 

contamination of milk via the binding of aflatoxin B1 to the bacteria (Hamidi et al., 

2013). 

These studies have prompted us to hypothesize that co-culturing V. gazogenes 

bacterium with A. flavus fungus will have significant inhibitory effects on the aflatoxin 
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biosynthesis of A. flavus. In this study, we treated A. flavus with live and dead V. 

gazogenes cells and observed the decrease in aflatoxin with no effect on fungal mycelial 

growth. We further conducted microscopic imaging and observed the uptake of V. 

gazogenes into endosome like compartments in A. flavus. To understand the mechanism 

of action of V. gazogenes we performed transcript accumulation analysis and surprisingly 

concluded that V. gazogenes aflatoxin inhibitory activity is not at the gene level but 

possibly at the cellular level. Finally our tests to understand the effect of V. gazogenes on 

pathogenicity of A. flavus reveal the decrease of aflatoxin and conidial formation in corn 

and increase of survival in drosophila that were infected with A. flavus. Definitively we 

report the discovery of a novel tool (V. gazogenes) to combat the aflatoxigenicity and 

pathogenicity of A. flavus. 

5.3 METHODS AND MATERIALS 

5.3.1 Strains, media and growth conditions 

The fungus Aspergillus flavus strain CA14PyrG.1 (acquired from USDA) and 

bacteria Vibrio gazogenes (ATCC29988), Staphylococcus aureus (ATCC), and 

Escherichia coli (ATCC) were used for this study. Yeast extract sucrose (YES) (2% 

yeast extract, 6% sucrose; pH 5.8) was used as the liquid growth medium and potato 

dextrose agar (PDA) and YES agar (YESA) were used as the solid growth media, for A. 

flavus. Fungal cells were grown for 72 h (as required by experiments) by inoculating 

0.5x106 spores per 50 mL of liquid growth medium and incubated at 29°C in a dark 

orbital shaker at 150 rpm. For growth of fungal mycelia on solid media, 2x104 spores 
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were center inoculated on 100 mm petri dishes containing 10 mL of PDA/YESA and 

incubated in the dark at 29°C. 

Difco Marine broth (cat # 2216, BD Biosciences, Sparks, MD) was used, as liquid 

growth media for V. gazogenes and the bacterial cells were grown for 24 h by inoculating 

105 colony forming units (cfu) /100 ml of growth medium. The cultures were incubated at 

29°C in a dark orbital shaker at 150 rpm. Tryptic soy broth (TSB, cat # 211822, BD 

Biosciences, Sparks, MD) was used as liquid growth media for S. aureus, and E. coli. 

Small inoculum were grown with 105 cfu/5 ml liquid growth media and incubated 

overnight at 37°C in a dark orbital shaker at 150 rpm. At the end of the incubation time, 

100,000 cells were taken from the small inoculum and further used to inoculate 100 ml 

TSB and incubated for 24 h at 37°C in a dark orbital shaker at 150 rpm. 

5.3.2 A. flavus treatment with V. gazogenes, S. aureus, and E. coli 

The fungus A. flavus was treated with both live (V. gazogenes) and dead bacteria 

(V. gazogenes, S. aureus, and E. coli). The 24 h bacterial cultures were spun down at 

4000 rpm for 15 min at room temperature and resuspended using YES media. With the 

help of absorbance measurements at 600 nm, 4, and 16 million cells from a 24 h bacterial 

culture (live or made unviable by boiling at 100OC for 10 min in a hot plate) were sorted 

out and added to the 50 ml YES liquid media simultaneous with 5x105 A. flavus spores 

and incubated at 29°C in a dark orbital shaker at 150 rpm for 24 h, 48 h and 72 h. At the 

end of incubation, A. flavus mycelia were harvested by filtering the mycelia through a 

miracloth (Millipore, Billerica, MA) and the cells subjected to appropriate processing for 

various growth measurements, aflatoxin analysis and gene expression analysis. 
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Comparably 4 or 16 million V. gazogenes cells (viable or unviable) were spread 

out as a monolayer on the YESA or PDA 10 cm media plates. The bacterial cells were 

allowed to dry in the biosafety cabinet and 2x104 spores of A. flavus were center 

inoculated. The hyphal growth of the fungus was recorded daily and at the end of the 

incubation period the YES and PDA media was chopped up and used appropriately for 

further processing of aflatoxin analysis. 

5.3.3 Growth measurements of A. flavus, V. gazogenes, S. aureus, and E. coli 

All fungal growth in liquid media was quantified by using dry weight 

measurements. Briefly, the mycelia were filtered out of the growth media using a 

miracloth (Millipore, Billerica, MA) and dried in an oven at 80°C for 6 h and the weight 

difference before and after drying was recorded. To estimate growth of A. flavus on PDA 

and YESA media plates, the spread of mycelial colony was measured daily. After 9 days 

of incubation time, spores were manually collected from PDA plates using 1xPBS with 

0.01% tween and resuspended in 50% glycerol. Spores were counted using 

haemocytometer. All bacterial growth measurements were performed using absorbance 

readings of growth media at 600 nm. An absorbance of 1.2 on the UV/Vis 

spectrophotometer was considered as 106 cells/ml bacterial cellular density and 

calculations were performed for 4 and 16 million bacterial cells appropriately. 

5.3.4 Aflatoxin measurements 

5.3.4.1 Aflatoxin ELISA analysis 

Aflatoxin was extracted from A. flavus cultured YES liquid media by adding 

equal volume of chloroform in a separating funnel and collecting the organic layer. 



www.manaraa.com

 69 

Chloroform was evaporated from the organic layer and the residual aflatoxin was 

resuspended in 1 ml of 70% methanol. Aflatoxin was extracted from A. flavus cultures 

grown in/on YES and PDA media plates by chopping the agar media and vigorously 

shaking it with equal volume of chloroform. Again the chloroform layer was collected, 

evaporated and the residual aflatoxin was resuspended in 1 ml of 70% methanol. The 

resuspended aflatoxin extract was spun down at 15,000 rpm for 1 min at room 

temperature to remove extra debris from the media and mycelia. The clear aflatoxin 

extract was used for analyzing aflatoxin using the Neogen Veratox Aflatoxin ELISA kit 

(cat # 8030) from Neogen (Lansing, MI, USA) and measured on a Stat Fax 4700 

Microstrip Reader (Awareness Technologies, Palm City, FL, USA) as per kit’s protocols. 

The ELISA has 2 ppb and 50 ppb as lower and upper limits of detection respectively. 

Therefore highly concentrated aflatoxin samples were diluted to fit within the detection 

range. 

5.3.4.2 Metabolite analysis using UPLC system 

The Food and Feed Safety Research Unit at USDA performed metabolite analysis 

using UPLC (Ultra high pressure liquid chromatography). Cultures of A. flavus 

(with/without V. gazogenes) (50 ml) were lyophilized and then extracted twice with 5% 

methanol / 95% ethyl acetate + 0.1% formic acid (15 ml) overnight with shaking at room 

temperature. The 2 extractions were pooled and concentrated in vacuo. The dried extract 

was redissolved in methanol at 5 mg/ml and centrifuged (14,000 rpm, 2 min) to remove 

particulate prior to analysis. Samples were analyzed using a Waters Acquity UPLC 

system (40% methanol in water, BEH C18 1.7 µm, 2.1 x 50 mm column) using 

fluorescence detection (Ex= 365 nm, Em= 440 nm). Samples were diluted 10-fold if the 
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aflatoxin signal saturated the detector. Analytical standards (Sigma-Aldrich, St. Louis, 

MO) were used to identify and quantify aflatoxin B1 (AFB1, retention time = 4.60 min.). 

Aflatoxin concentrations are expressed in ng aflatoxin / ml culture or ng aflatoxin / g 

mycelium. 

Simultaneously samples were also analyzed for Cyclopiazonic acid, on a Waters 

Acquity UPLC system using PDA UV and Qda mass detection with the following 

gradient solvent system (0.5 ml/min, solvent A: 0.1% formic acid in water; solvent B: 

0.1% formic acid in acetonitrile): 5% B (0-1.25 min.), gradient to 25% B (1.25-1.5 min.), 

gradient to 100% B (1.5-5.0 min.), 100% B (5.0-7.5 min.), then column equilibration 5% 

B (7.6-10.1 min.). Cyclopiazonic acid was identified using an authentic standard 

purchased from Sigma Aldrich (CPA, retention time = 4.10 min, M+H = 337.2 m/z). CPA 

concentrations are expressed in ng CPA / ml culture or ng CPA / g mycelium. 

5.3.5 RNA extraction, purification and cDNA synthesis 

Total RNA was extracted from fungal cells harvested using a TRIzol-based (TRI 

Reagent®; cat # T9424, Sigma, Carlsbad, CA, USA) method. The harvested mycelia 

were ground with a mortar and pestle in liquid nitrogen. The cold powdered mycelia was 

mixed with TRI Reagent® and chloroform and the mix was spun down at 10,000 rpm for 

10 min at room temperature. The organic layer was mixed with equal volumes of 

isopropanol and incubated on ice for 15 min and later centrifuged at 10,000 rpm for 15 

min at room temperature. The precipitated crude RNA was washed with 70% ethanol and 

resuspended in RNAse/DNAse free water (Sigma, Carlsbad, CA, USA). Within 24 h of 

extraction, RNA cleanup was performed using a Qiagen RNEasy Cleanup Kit (Qiagen, 



www.manaraa.com

 71 

Valencia, CA, USA), as per kit’s instructions and samples were stored at −80°C. Total 

RNA was then reverse transcribed to cDNA using iScript™ cDNA Synthesis Kit 

(BioRad Laboratories, Hercules, CA, USA) as per kit’s instructions. All samples were 

checked for concentration and purity after each step using a NanoDrop 2000 

Spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA). All cDNA samples 

were stored at −20°C until subsequent RTPCR quantification. 

5.3.6 Quantitative PCR Assays 

Expression of global secondary metabolism genes (laeA, veA, AtfB), aflatoxin 

pathway genes (aflR, nor-1, ver-1), pathogenic genes (SAP) and superoxide dismutase 

(SOD) genes (MnSOD, CuZnSOD) was examined by quantitative PCR assays (qPCR) 

using SsoAdvanced Universal SYBR Green Supermix (BioRad Laboratories, Hercules, 

CA). Gene specific forward and reverse primers were designed using Primer3 online 

software (Ye et al., 2012). Reactions were performed as per BioRad SYBR Green 

protocol guidelines and quantified using a CFX96 thermal cycler (Bio-Rad Laboratories, 

Hercules, CA, USA). All RT-PCRs were performed in triplicate for each gene per 

sample. The 18s ribosomal DNA was used as a reference gene in the gene analysis. The 

gene expression values of A. flavus obtained from the threshold cycle values were 

normalized to the 18s rDNA of each sample. We choose 24, 30 and 40 h to study the 

transcripts of the genes (explained later in results). For quantitative comparison of gene 

expressions, the values for each target gene at 30 h and 40 h were expressed as fold 

change relative to the 24 h time point of that specific treatment condition. Data analysis 

was performed using CFX Manager software (Version 3.1, Bio-Rad Laboratories, 
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Hercules, CA, USA, 2012). Significant change in gene expression was considered if fold 

change was ≥ 2 and p-value was < 0.01. 

5.3.7 Imaging of fungus and bacteria 

5.3.7.1 Confocal microscopy 

A. flavus was grown on a cover slip and treated with V. gazogenes for 6 h. The 

fungal mycelia were fixed using 4% formaldehyde and washed using 1xPBS and 0.05% 

tritionX-100. The resulting mycelia were studied and imaged using Leica TCS SP5 

confocal microscope at 20x magnification. 

5.3.7.2 Scanning electron microscopy 

A. flavus was treated with 16 million live V. gazogenes cells for 48 h in YES 

liquid medium and the mycelia were harvested and fixed using 3% glutaraldehyde and 

2% osmium tetroxide, dehydrated in ethyl alcohol, and dried using LADD critical point 

dryer. Samples were later coated with gold using Denton Vacuum Desk II sputter coater. 

The coated samples were loaded onto TESCAN Vega-3 SBU scanning electron 

microscope and studied at 17k magnification to understand the effect of V. gazogenes by 

A. flavus hyphae. 

5.3.7.3 Transmission electron microscopy 

Briefly A. flavus was treated with 16 million live V. gazogenes cells for 48 h in 

YES medium. Mycelia were harvested, fixed using 3% glutaraldehyde and 2% osmium 

tetroxide, dehydrated in ethyl alcohol, and made into blocks using resin mix. The resin 

blocks were trimmed and cross-sectioned into 80 nm thick sections using a diamond 
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knife (Micro Star Technology Inc., Huntsville, Texas) loaded onto a Sorvall Porter-Blum 

MT2-B Ultra-Microtome. The sections were loaded onto copper grids, and later stained 

with lead stain and 5% uranyl acetate. The stained grids were then loaded onto Hibachi 

H8000 scanning transmission electron microscope. Pressure was maintained at 10-7 Torr, 

accelerating voltage at 200kV and images were taken at low magnification (10,000x) and 

at high magnification (20,000x) and the localization of the bacterium in A. flavus cells 

was studied. 

5.3.8 Corn treatments 

Corn kernels were infected with A. flavus in the presence and absence of live V. 

gazogenes. Briefly fresh commercial packaged corn was bought from grocery store and 

kernels were separated. The kernels were then poked with a toothpick or needle to make a 

microscopic hole to mimic an insect bite. 10 kernels were placed in each set and 3 sets 

were in each treatment condition – corn with no infection (negative control), corn with V. 

gazogenes (positive control for bacteria), corn with only A. flavus (positive control for 

fungal infection), and corn with A. flavus and live V. gazogenes (the treatment set). A 

monolayer of 400,000 live V. gazogenes cell suspended in YES media was applied to the 

kernels and semi dried. 10,000 A. flavus spores were inoculated on top of the bacterial 

layer for the treatment conditions. Microscopic images using a Leica dissection 

microscope were taken to observe and record the effect of V. gazogenes on A. flavus 

infection. The percentage of infection was estimated (after 48 h of incubation) by 

comparing the number of infected kernels in the presence and absence of V. gazogenes. 

After 5 days of incubation the kernels were ground in chloroform and filtered. The filtrate 

was evaporated and residual extract was rinsed out with 100% methanol. Methanol was 
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evaporated and extracted aflatoxin was resuspended in 1 ml of 70% methanol. The 

resuspended aflatoxin extract was spun down at 15,000 rpm for 1 min at room 

temperature to remove extra debris from the corn and mycelia. The clear aflatoxin extract 

was used for analyzing aflatoxin using the Neogen Veratox Aflatoxin ELISA kit (cat # 

8030) from Neogen (Lansing, MI, USA) and measured on a Stat Fax 4700 Microstrip 

Reader (Awareness Technologies, Palm City, FL, USA) as per kit’s protocols. The 

ELISA has 2 ppb and 50 ppb as lower and upper limits of detection respectively. Thus 

highly concentrated aflatoxin samples were diluted to fit within the detection range. 

5.3.9 Drosophila fly treatment 

Drosophila melanogaster female flies of 3-5 days old were treated with A. flavus 

in the presence and absence of live V. gazogenes and the survival of the flies were 

recorded. Method used was published by Ramírez-Camejo et al., in 2014. Drosophila 

flies were anaesthetized using carbon dioxide and placed on a PDA 10 cm agar plate 

containing A. flavus colony with spores. The flies were rolled on the plates by agitation 

for 1 min to make them inoculated and then transferred to tubes containing food. (To 

quantify the number of spores, the inoculated flies were vortexed in sterile water 

containing 0.01% Tween 80 and centrifuged to spin down the spores, which were then 

counted using haemocytometer – 2 to 4 x104 spores attached/fly). The flies were 

transferred to fresh media tube after 1 h to loose any extra spores. For control or 

untreated fly treatments 25 flies per tube of 3 tubes were used. For V. gazogenes 

treatments 29 flies per tube of 3 tubes were used. For V. gazogenes treatments the 

drosophila flies were starved for 8 h and then given feed containing V. gazogenes for next 

24 h. The flies were anaesthetized using carbon dioxide and rolled on PDA 10 cm plates 
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grown with A. flavus similar to the control flies. These infected flies were placed back on 

V. gazogenes containing feed and the feed was replaced with fresh feed containing V. 

gazogenes every 24 h. At the end of 7 days the survival of the flies as compared to 

controls (negative control had no A. flavus infection and positive control had A. flavus 

infection but no V. gazogenes) was observed and recorded. 

5.3.10 Statistical analysis 

All experiments were performed in triplicate. Microsoft Excel was used to 

generate graphs, perform statistical analysis and calculate significance for dry weight 

measurements and aflatoxin analysis. Significance was considered when p value was less 

than 0.01. RT-PCR statistical analysis was performed using CFX manager software with 

parameters set for significance at p-value <0.01 and gene expression fold change ≥ 2. 

5.4 RESULTS 

5.4.1 V. gazogenes inhibits aflatoxin production of A. flavus without effecting growth of 

the fungus 

To understand the effect of V. gazogenes on A. flavus growth and aflatoxin 

synthesis, we initially performed a dose response of multiple cellular concentrations of V. 

gazogenes on A. flavus. The fungus was treated with 4 and 16 million V. gazogenes cells 

in YES liquid media for 48 h. The dry weight analysis at the end of the incubation period 

revealed that the mycelial growth of A. flavus did not differ with either 4 or 16 million V. 

gazogenes cells as compared to the untreated control (Figure 5.1a). On the other hand, the 

aflatoxin levels analyzed using ELISA technique show that there were nearly 
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undetectable levels of aflatoxin in the YES liquid media in the presence of V. gazogenes 

(irrespective of cellular concentration) as compared to the untreated control (Figure 5.1b). 

Most surfaces in the environment on which A. flavus thrives are solid. Thus we 

performed similar experiments on YESA solid media. A. flavus was treated with different 

bacterial cellular concentrations of 4 and 16 million V. gazogenes cells on the YESA 

media plates and the spread of the fungal colony on the media was measured and 

recorded daily. The graph in figure 5.1c reveals that V. gazogenes decreases the A. flavus 

growth by 25% regardless of the bacterial cellular concentration. Aflatoxin analysis at the 

end of 9 days of incubation showed that 16 million V. gazogenes cells significantly 

decreased aflatoxin production to nearly undetectable levels where as 4 million V. 

gazogenes cells only made a 25% difference as compared to the untreated control (figure 

5.1d). 

These data clearly state that 16 million V. gazogenes cells consistently and 

significantly decrease aflatoxin production (>99%) in both solid and liquid media. The 

aflatoxin inhibitory effect of 16 million V. gazogenes cells was further validated by 

UPLC (table 5.2). The ultra HPLC shows the complete loss of aflatoxin B1 and aflatoxin 

B2 by A. flavus during V. gazogenes treatments. We also observed the complete loss of 

Cyclopiazonic acid (another major mycotoxin belonging to ergoline alkaloids) of A. 

flavus during V. gazogenes treatments. Accordingly for further experimentation we 

choose to use 16 million V. gazogenes cells. 
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5.4.2. V. gazogenes decreases A. flavus aflatoxin production over time 

To understand the effect of V. gazogenes on aflatoxin production beyond the 

normal 48 h, we treated A. flavus (in YES liquid media) with 16 million V. gazogenes 

cells for 72 hours, collecting media and mycelia at 24, 48 and 72 h time points. Dry 

weight analysis revealed the no difference in the growth of the fungi between treated and 

untreated samples (figure 5.2a) for that specific time point. On the other hand the 

aflatoxin analysis revealed that V. gazogenes decreases aflatoxin to undetectable levels 

even at 72 h time point (figure 5.2b). The data shows that the aflatoxin inhibitory effect 

of V. gazogenes does not stop at the early stationary phase (48 h) where the fungal cells 

were thriving but also that the V. gazogenes effectively inhibits aflatoxin when the fungal 

cells were over crowded and starting to form a biofilm (72 h). 

5.4.3 V. gazogenes aflatoxin inhibitory effect was carried on to the second generation of 

A. flavus 

The classical potato dextrose agar media was used to study the growth of A. flavus 

spores in the presence of V. gazogenes. Two different bacterial cellular concentrations of 

4 and 16 million V. gazogenes cells were spread on the agar plate and fungal colony 

growth was observed for 9 days. Observation of the growth of fungal biofilm in the 

presence of the bacterium tells us that the growth was significantly slower in the 

beginning but eventually catches up to the control with no bacteria (figure 5.3a). The 

aflatoxin analysis shows the same pattern of aflatoxin inhibition (~75% for 4 million cells 

and undetectable levels for 16 million cells) in the presence of V. gazogenes (figure 5.3b). 

But surprisingly the spore count for the fungal colony in the presence of 16 million cells 
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was >50% as compared to its no bacterial control (figure 5.3c). The gram-negative 

bacterium V. gazogenes encourages spore generation in A. flavus. 

To test the viability and aflatoxin inhibitory effects of the spores generated in the 

presence of V. gazogenes, we collected the spores from bacterial treated (4 and 16 million 

cells) fungal colonies and re-plated/inoculated them on fresh PDA plates. We called these 

the second-generation spores. The second-generation spores had growth pattern and spore 

formation similar to controls (figure 5.3d). The second-generation spores generated from 

4 million bacterial cells treated fungi did not carry on the aflatoxin inhibitory 

characteristics but the spores generated from the 16 million bacterial cells treated fungi 

inhibited aflatoxin by 40% (figure 5.3e). Surprisingly the second-generation spores 

carried their aflatoxin inhibition characteristics. This tells us that the V. gazogenes 

aflatoxin inhibitory effects can be carried through generations. 

5.4.4 Dead V. gazogenes cells inhibit aflatoxin levels in A. flavus 

Dead bacterial biomass had proven to be better and safer bioadsorbent for 

contaminants in the environment and is much preferred due to lack of nutrients and 

cultural conditions (Zeroual et al., 2006). To test the supposition that dead V. gazogenes 

cells were equally capable of decreasing aflatoxin levels in A. flavus cultural media, we 

boiled the bacteria at 100OC for 10 min in a hot plate to make them unviable. (Bacterial 

cells were tested by inoculation into fresh marine broth media and observed for growth 

using spectrophotometric analysis over the next 48 h and confirmed the no growth of the 

V. gazogenes cells). 4 and 16 million dead V. gazogenes cells were used to treat A. flavus 

and the mycelial growth and aflatoxin synthesis were observed. After 48 h the fungal 
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mycelial mass did not change (regardless of bacterial cellular concentrations) but the 

aflatoxin levels significantly decrease with 16 million dead V. gazogenes cells (figure 

5.4) similar to live V. gazogenes cells. The UPLC data in table 5.2 shows that dead V. 

gazogenes cells cause complete loss of aflatoxin B1, aflatoxin B2 and cyclopiazonic acid 

similar to live V. gazogenes cells. This shows us that the unviable and viable V. 

gazogenes cells equally inhibit mycotoxin production. 

5.4.5 Aflatoxin inhibition of A. flavus is specific to V. gazogenes 

To understand if the aflatoxin inhibitory effect was limited to V. gazogenes, we 

treated A. flavus with a gram-positive bacterium, Staphylococcus aureus and a gram-

negative bacterium, Escherichia coli and analyzed the fungal growth and aflatoxin levels. 

16 million dead bacterial cells were added to A. flavus and the fungus was harvested after 

72 h. Dead bacteria cells were used to reduce the pathogenic interaction between the A. 

flavus, S. aureus and E. coli. The growth of the A. flavus did not change in the presence 

of either S. aureus or E. coli and the aflatoxin levels did not show any significant change 

either (figure 5.5). This data points out that there is a high possibility that the aflatoxin 

inhibitory effect of V. gazogenes is exclusive to itself.  

5.4.6 A. flavus uptake of V. gazogenes 

Bacterial-fungal interactions exist via various physical associations. In the 

bacterial-fungal biofilms, one form of association is the internalization of bacteria by 

fungi altering the fungal physiology (Frey-Klett et al., 2011). V gazogenes synthesizes 

prodigiosins, which are red in color giving the bacterial cells a red color. A. flavus 

cultures (colorless or white) in YES liquid medium were treated with live V. gazogenes 
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(red color) and every 6 h the bacterial presence in YES was observed and recorded using 

spectrophotometry reading at 600 nm. We observed that the V. gazogenes optical density 

decreased over time and the fungal mycelia turned reddish pink (as attributed to the red 

pigment in the bacterial cells). The figure 5.6a shows that over a time period of 42 h the 

bacteria were completely depleted from the YES media and the media turned back to its 

original yellow. To understand the interactions between A. flavus and V. gazogenes we 

fixed A. flavus hyphae in the presence of live V. gazogenes and studied them using a 

Leica confocal microscope. At 20x magnification we observed the presence of bacteria 

inside the fungal walls (figure 5.6b) confirming the uptake of V. gazogenes by A. flavus 

hyphae. 

5.4.7 Live V. gazogenes increases aflatoxin biosynthesis pathway genes of A. flavus over 

time 

Previously, Gummadidala et al (Gummadidala et al, 2016) had shown that V. 

gazogenes metabolites decrease aflatoxin biosynthesis by inhibiting the aflatoxin genes. 

After understanding the effect of V. gazogenes on growth and aflatoxin production of A. 

flavus and observing the uptake of V. gazogenes by A. flavus hyphae, we hypothesized 

the aflatoxin inhibitory effect was happening at the transcript level. A quantitative 

comparison of transcript accumulation of two aflatoxin genes (nor-1 and ver-1) and the 

aflatoxin pathway regulator gene (aflR) was performed. Norsolorinic acid is the first 

stable compound in the 17-step aflatoxin biosynthesis pathway, which is synthesized by 

the Nor-1 reductase enzyme that is encoded by nor-1 gene (Jiujiang Yu, 2012). 

Versicolorin A (VER A) is the last compound synthesized prior to the making of the 

intermediates that lead to the final aflatoxin products. VER A is converted to the first 
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intermediate by a reductase, Ver-1 that is encoded by ver-1 gene (Jiujiang Yu, 2012). The 

aflatoxin biosynthesis genes get activated by 24 h with transcript accumulation at 30 h 

and by 40 h the fungus is producing copious amounts of aflatoxin in YES liquid growth 

media (Roze et al., 2007a). Thus we choose 24, 30 and 40 h to study the transcripts of 

nor-1, ver-1 and aflR genes. The 30 h and 40 h samples were compared to the 24 h 

sample of that specific treatment condition to calculate relative fold change in gene 

expressions. Figure 5.7 shows 3 graphs of fold change of aflR, nor-1 and ver-1 gene 

expressions. The aflR (2-3 fold change), nor-1 (3-7 fold change) and ver-1 (2-9 fold 

change) gene expressions of untreated control samples of A. flavus were significantly 

upregulated from 24 h to 40 h, which is in accordance with multiple published studies. 

The aflR (~7 fold change), nor-1 (~25 fold change) and ver-1 (14-17 fold change) gene 

expressions of live V. gazogenes treated samples of A. flavus were significantly 

upregulated from 24 h to 40 h as compared to their specific controls. On the contrary the 

for the A. flavus treated with dead V. gazogenes cells, aflR, and nor-1 show no significant 

change and ver-1 decreased at 30 h and increased at 40 h to reach get back to the regular 

levels. The data leads us to hypothesize that the V. gazogenes aflatoxin inhibitory 

mechanism is different for live and dead V. gazogenes cells. The compilation of the data 

shows that both live and dead V. gazogenes cells decrease aflatoxin but do not inhibit the 

aflatoxin pathway genes. This leads to the conclusion that the aflatoxin inhibitory effect 

of V. gazogenes was not occurring by regulation of the aflatoxin pathway genes. 
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5.4.8 Effect of V. gazogenes on global secondary metabolism regulatory genes of A. 

flavus 

The two global secondary metabolism regulatory genes laeA and veA have been 

found to be involved in regulation of aflatoxin synthesis in A. flavus and the deletion of 

these genes leads to complete loss of aflatoxin (Cary et al., 2018). To understand if any of 

the upstream positive or negative regulators of aflatoxin pathway were affected we 

studied the transcript accumulation of laeA, veA and AtfB in the presence of live/dead V. 

gazogenes cells at the 24 h, 30 h and 40 h time points of A. flavus growth (figure 5.8). 

The 30 h and 40 h samples were compared to the 24 h sample of that specific treatment 

condition. The live V. gazogenes cells inhibit the laeA and increase the veA gene 

expressions from a 24 h to 40 h time period, which was opposite to what happened in the 

untreated control samples. laeA is a negative regulator of veA (Amaike and Keller 2009) 

so its not surprising that one transcript accumulation increases while the other deceases. 

The pattern of laeA and veA gene expression was similar during dead V. gazogenes 

treatments with increase in their gene expression at 40 h time point. We would like to 

point out once again that the pattern of gene expression is not explaining the decrease in 

aflatoxin levels. This draws the conclusion that live or dead V. gazogenes aflatoxin 

inhibitory effect is not due to regulation of aflatoxin pathway genes or global secondary 

metabolite regulatory genes. Rather the bacterial inhibitory effect might be at the cellular 

level. 
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5.4.9 V. gazogenes was endocytosed into endosomal like compartments by the A. flavus 

To understand the effect of V. gazogenes on A. flavus at a cellular level we used 

electron microscopy to study the surface (SEM) and inside (TEM) of the fungal hyphae 

in the presence of live V. gazogenes cells. The scanning electron microscope (SEM) 

pictures in figure 5.9 shows images of the surface of A. flavus hyphae untreated/treated 

with live V. gazogenes cells. At 17k magnification the wrinkled effected surface of V. 

gazogenes treated hyphae can be appreciated. The SEM magnified image of the treated 

hyphae shows the entry of the bacteria (yellow arrows) into the A. flavus probably via 

endocytosis like process. The transmission electron microscopy (TEM) pictures in figure 

5.10 illustrate cross-sectional images of the A. flavus hypha exposing different internal 

cellular structures. The 10k and 20k magnified TEM images show the presence of the V. 

gazogenes in endosomal like compartments (white arrows) in the A. flavus hypha. 

Similarly uptake of nano particles by fungi also altered the fungal physiology by 

decreasing aflatoxin biosynthesis (Mitra et al., 2017). These microscopic images state 

that V. gazogenes enter the A. flavus hyphae leading to decrease in aflatoxin biosynthesis. 

Therefore we state that the V. gazogenes aflatoxin inhibitory effect was happening at the 

cellular level. 

5.4.10 Effect of V. gazogenes on SOD genes 

Previous studies in our lab support the hypothesis that reactive oxygen species 

output is regulated by aflatoxin biosynthesis (Keene et al., 2018). To understand the 

cellular processes involved in aflatoxin inhibitory effect of V. gazogenes we studied the 

genes involved in reactive oxygen species (ROS) regulation. Superoxide dismutases are 
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synthesized in response to reactive oxygen species. We studied the genes MnSOD and 

CuZnSOD in the presence of live/dead V. gazogenes cells at the 24 h, 30 h and 40 h time 

points of A. flavus growth (figure 5.11). The 30 h and 40 h samples were compared to the 

24 h sample of that specific treatment condition. The CuZnSOD gene expression was 

decreased as compared to its specific control during both live and dead V. gazogenes 

treatments. This is similar to the already existing data stating the decrease in CuZnSOD 

from 24 h to 40 h. The MnSOD gene expression increased as compared to its specific 

control during both live and dead V. gazogenes treatments following the same pattern as 

untreated control samples. The only difference was that in the live V. gazogenes 

treatments the increase in MnSOD over time is double as compared to the untreated 

controls. Keene et al propose a model for aflatoxin biosynthesis protecting the cells 

against the toxic effects of ROS (Keene et al., 2018). Therefore more aflatoxin means 

less ROS. Thus the increase in MnSOD in presence of live V. gazogenes cells might be 

hypothesized that there might be increased levels of ROS as the aflatoxin levels had been 

all but completely inhibited. 

5.4.11 V. gazogenes decreases aflatoxin in corn and delays infestation of corn by A. 

flavus 

A. flavus effects plant health and crop produce by not only producing the 

mycotoxin aflatoxin but also by acting as a pathogen. Data already showed the aflatoxin 

inhibitory effects of V. gazogenes so now we would like to understand the effects of V. 

gazogenes on A. flavus pathogenicity. We pricked corn kernels to mimic insect bites 

since it was proved that insect bites make the corn more susceptible to A. flavus 

infestations (Cardwell et al., 2000). Three sets of 10-kernels/each set were used and data 
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was shown in figure 5.12 where the top panel shows pictures of kernels taken using Leica 

dissection microscope. The kernels having no A. flavus or V. gazogenes did not have any 

bacterial or fungal contamination. The positive controls for V. gazogenes did not have 

any fungal contamination or bacterial infestation suggesting that V. gazogenes might not 

be a plant pathogen. The positive controls for A. flavus had plenty of mycelial growth and 

spore generation proving the already known fact that A. flavus infests maize. The kernels 

treated with live V. gazogenes cells prior to A. flavus infestation showed only 20% 

conidial formation, which is almost 80% less than A. flavus positive controls. The 

aflatoxin production in the V. gazogenes treated kernels was <98% as compared to the 

positive controls. These data show that V. gazogenes has a high possibility to become 

anti-A. flavus pesticide for plants. 

5.4.12 V. gazogenes increases survival of Drosophila flies infected with A. flavus 

Drosophila melanogaster is a well-studied and well-established model organism 

for understanding human diseases. Here we used the common fruit fly as a model to 

study the effects of V. gazogenes on A. flavus human pathogen. We used atleast 25 

flies/tube of 3 sets per condition and data was shown in figure 5.13. Drosophila flies with 

no A. flavus or V. gazogenes had survival of 100% at the end of 7 days. Drosophila flies 

with only V. gazogenes also had survival of 100% at the end of 7 days suggesting that V. 

gazogenes might not be a Drosophila fly pathogen. The positive controls with Drosophila 

having infected with only A. flavus had survival of 0 at the end of 8 days since all flies 

died. Surprisingly the flies treated with V. gazogenes in their feed and then infected with 

A. flavus had survival of 40% at the end of 7 days. Finally we studied the pathogenic 

gene SAP (serine alanine protease) since it was considered as a marker for A. flavus 
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pathogenicity. In the untreated samples SAP gene expression increased at 40 h but in live 

V. gazogenes treated samples the SAP gene expression increase early on at 30 h and 

maintain high through 40 h. The dead V. gazogenes cell treatments to not effect SAP 

gene expression as compared to their control at 24 h. The data show that V. gazogenes 

increase survival in Drosophila during A. flavus infections and the mechanism of action 

might not be at the gene level. 

5.5 DISCUSSION 

This research study shows the discovery of a novel tool (Vibrio gazogenes) to 

inhibit aflatoxin production and pathogenicity of human and plant pathogen Aspergillus 

flavus. Researchers had previously shown the inhibition of aflatoxin production in A. 

flavus or a close sister species A. parasiticus by lactic acid bacteria such as Lactobacillus 

casei (Chang and Kim 2007), gram positive bacteria such as Bacillus subtilis (Farzaneh et 

al., 2017) and other soil bacteria. Most studies show a decrease in aflatoxin levels and the 

mechanism of action of the bacterium was primarily by inhibiting the aflatoxin 

biosynthesis pathway genes. Here for the first time we use a marine bacterium V. 

gazogenes and the mechanism of aflatoxin inhibition was not at the gene level (we 

observe an increase in aflatoxin and secondary metabolite regulatory genes) but at the 

cellular level thereby breaking the previously established paradigm. 

Both viable and unviable V. gazogenes cells inhibition of aflatoxin is >98% with 

out effecting the growth of A. flavus in both solid and liquid growth medium. On the 

other hand live V. gazogenes cells significantly increase spore production of A. flavus on 

classical potato dextrose media. Spores are the means by which the fungi disperse and 
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find new and favorable environment to grow and flourish on. The second-generation 

spores generated due to A. flavus treatment with V. gazogenes carried over the aflatoxin 

inhibition properties and consequently decreased aflatoxin by 40%. It is new to know that 

the V. gazogenes aflatoxin inhibitory effects can transcend generations. 

The gene data of A. flavus of various genes up- and down- regulated in the 

presence of live and dead V. gazogenes does not follow the same pattern. This leads us to 

conclude that live and dead V. gazogenes cells do not follow the same mechanism of 

aflatoxin inhibition in A. flavus. V. gazogenes were made nonviable or dead by heating 

which causes protein denaturation but might not break the structural integrity of the 

peptidoglycan structure of the bacterial cell wall (Carolyn A. Haskard, et al., 2001). 

Lactic acid bacteria made nonviable by heating effectively removed aflatoxin B1 from 

the media suggesting binding rather than metabolism (Carolyn A. Haskard et al., 2001). 

Therefore the dead V. gazogenes might be removing aflatoxin from media via cell wall 

binding. 

The aflatoxin inhibition by live V. gazogenes was through the uptake of the live 

bacterium by fungus into endosomal like compartments, which we had observed using 

confocal, SEM and TEM microscopies. Previously published data show the 

internalization of the bacteria via endocytosis like mechanism (Guerra-Tschuschke et al., 

1991). Anindya et al isolated protoplasts and performed feeding experiments concluding 

that aflatoxin synthesis was happening in vesicles termed aflatoxisomes, which are 

endosomal like compartments (Chanda et al., 2009). Thus we suggest that live V. 

gazogenes cells were entering the A. flavus through endocytosis like mechanism (into 

endocytosis like compartments) probably into the aflatoxisomes (that contains all the 
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enzymes required for aflatoxin synthesis) and inhibiting the aflatoxin biosynthesis at the 

cellular level. Researchers propose that during the fungal growth, a shift in the media 

components might activate the hydrolase and laccase enzymes, which have the capacity 

to degrade the lactone ring of the aflatoxin (Fatemeh Siahmoshteh et al., 2016). 

Considering the existing data we hypothesize that live V. gazogenes cells might be 

degrading the aflatoxin in the aflatoxisome. Since there was no aflatoxin released into the 

growth media during live V. gazogenes treatments (undetected using ELISA) but an 

increase in aflatoxin pathway genes was observed we predict that the fungal cells were 

making increased transcript to generate more aflatoxin in the fungal cells. 

The relationship between the live V. gazogenes and A. flavus is not conclusive 

from the data obtained. Further experimentation is required to determine the symbiotic 

relationship’s existence and nature between the two microorganisms. We do not yet know 

if the bacterium is still viable inside the fungus. Bacteria are hard to kill and as such there 

is a strong possibility for bacterial-fungal interaction within the fungal cell. 

Understanding the mechanism by which V. gazogenes decreases aflatoxin and 

inhibits pathogenicity of A. flavus will help us further understand how to develop, design 

and target A. flavus pathogen and decrease mortality rates of fungal infected patients and 

plants. This research establishes a novel concept for combating Aspergillosis infections 

that are very common in homes impacted by weather events such as hurricanes and are 

common in immunocompromised individuals (Krishnan et al., 2009). Finally 

polymicrobial (bacterial and fungal) colonies pose a potential problem in clinical setting 

given their multi-drug resistance capabilities. This study has initiated a novel research 

direction that can elucidate the molecular details that regulate bacterial uptake in fungal 
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pathogens. Such interactions are critical in designing probiotic supplements for 

preventing release of virulence factors and secondary metabolites that are key in fungal 

pathogenesis. 
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Table 5.1: List of primers used in this study. 

 

Genes Primer Sequences 

aflR F 5’-ACCTCATGCTCATACCGAGG-3’ 
R 5’-GAAGACAGGGTGCTTTGCTC-3’ 

nor-1 F 5’-CACTTAGCCAGCACGATCAA-3’ 
R 5’-ATGATCATCCGACTGCCTTC-3’ 

ver-1 F 5’-AACACTCGTGGCCAGTTCTT-3’ 
R 5’-ATATACTCCCGCGACACAGC-3’ 

AtfB F 5’-CCGGTTTCGTGAGGTATCCA-3’ 
R 5’-GCATGGGAGAAACCAGATCG-3’ 

laeA F 5’-ATGGGGTGTGGAAGTGTGAT-3’ 
R 5’-ATCGGTAAAACCAGCCTCCT-3’ 

veA F 5’-TCCAGCTATCCCAAGAATGG-3’ 
R 5’-TAATCCCCCGATAGAGCCTT-3’ 

MnSOD F 5’-CCACATCAACCACTCCCTCT-3’ 
R 5’-TCCTGATCCTTCGTCGAAAC-3’ 

CuZnSOD-1 F 5’-CACCAGTTCGGTGACAACAC-3’ 
R 5’-GTGTTCACTACGGCCAAGGT-3’ 

18s F 5’-GCTGAAAACCTCGACTTCGG-3’ 
R 5’-CCTAATTCCCCGTTACCCGT-3’ 

Tubulin F 5’-TCTCCAAGATCCGTGAGGAG-3’ 
R 5’-TTCAGGTCACCGTAAGAGGG-3’ 

SAP F 5’-GAATTCTCGTGGACGTAGCG-3’ 
R 5’-GACGTCGGTCCTTCTTCTCC-3’ 
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Table 5.2: Data of Aflatoxin B1, Aflatoxin B2 and Cyclopiazonic acid obtained from 
UPLC 

 

Sample Aflatoxin B1 
ppb (ng/g mycelia) 

Aflatoxin B2 
ppb (ng/g mycelia) 

Cyclopiazonic acid 
ppb (ng/g mycelia) 

A. flavus 
(no V. gazogenes) 

24.51 3.27 7298.41 

A. flavus + 16 million 
live V. gazogenes 

cells 

0 0 0 

A. flavus + 16 million 
dead V. gazogenes 

cells 

0 0 0 
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Figure 5.1: Effect of V. gazogenes on aflatoxin biosynthesis and growth of A. flavus 
mycelial growth: a) & b) A. flavus co-cultured with 4 and 16 million V. gazogenes cells in 
YES liquid media and the dry weight of fungal mycelia was measured and aflatoxin 
levels analyzed after 48 h of incubation. The percentage of A. flavus mycelial weight was 
calculated and plotted on y-axis. Bars represent measurements relative to the dry weight 
of untreated (a). Percent aflatoxin accumulation in media of 48 h cultures (b). p-value 
<0.01 and n=3 c)&d) A. flavus co-cultured with V. gazogenes on YES agar media plates 
and the colony growth was measured and the aflatoxin was analyzed after 9 days of 
incubation. The growth of fungal colony in cm was measured and plotted on y-axis (c) 
(n=2). Percent aflatoxin accumulation in agar media of the fungal colonies was plotted 
(d) (n=4). p-value <0.01. Statistical significance of two-tailed p-values were determined 
using an unpaired t-test. Error-bars represent SEM. Star indicates significance. 
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Figure 5.2: Effect of V. gazogenes on A. flavus aflatoxin production over time: A. flavus 
was co-cultured with 16 million V. gazogenes cells in YES liquid media and the mycelial 
growth of fungus was calculated and aflatoxin analyzed at 24, 48 and 72 h. a) Dry weight 
of mycelia was plotted on y-axis and bars represent the measurements in grams. b) 
Percentage of aflatoxin was plotted on y-axis considering no treated (C) 72 h control 
aflatoxin levels as 100% and the aflatoxin in rest of samples plotted relative to the 72 h C. 
Insert shows the accumulation of aflatoxin at 48 h. p-value <0.01. Statistical significance 
of two-tailed p-values were determined using an unpaired t-test for n=3. Error-bars 
represent SEM. Star indicates significance. 
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Figure 5.3: A) Effect of V. gazogenes on A. flavus spore generation: A. flavus was co-
cultured with V. gazogenes on 10cm PDA media plates and the colony growth was 
measured and the aflatoxin was analyzed after 9 days of incubation. i) The growth of 
fungal colony in cm was measured and plotted on y-axis. ii) The bars represent percent 
aflatoxin accumulation in agar media of the fungal colonies as compared to the untreated 
control. iii) Percent of spores per colony was counted and plotted with the bars 
representing the number of spores as compared to the untreated control (n=4). B) Activity 
of second-generation A. flavus spores. Spores generated from bacterial treatment were re-
plated on fresh PDA plates (without V. gazogenes) and colony growth was observed for 9 
days. i) The growth of fungal colony in cm was measured and plotted on y-axis. ii) The 
bars represent percent aflatoxin accumulation in agar media of the fungal colonies as 
compared to the untreated control. iii) Percent of spores per colony was counted and 
plotted with the bars representing the number of spores as compared to the untreated 
control (n=2). Statistical significance of two-tailed p-values were determined using an 
unpaired t-test. Error-bars represent SEM. Star indicates significance. 
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Figure 5.4: Effect of dead V. gazogenes cells on A. flavus growth and aflatoxin 
production: A. flavus co-cultured with dead 4 and 16 million V. gazogenes cells in YES 
liquid media and the dry weight of fungal mycelia was measured and aflatoxin levels 
analyzed after 48 h of incubation. a) The percentage of A. flavus mycelial weight was 
calculated and plotted on y-axis. Bars represent measurements relative to the dry weight 
of untreated. b) Percent aflatoxin accumulation in media of 48 h cultures. p-value <0.01 
and n=2. Statistical significance of two-tailed p-values were determined using an 
unpaired t-test for n=3. Error-bars represent SEM. Star indicates significance. 
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Figure 5.5: Effect of dead S. aureus and E. coli on A. flavus growth and aflatoxin 
production: A. flavus co-cultured with dead 16 million S. aureus and E. coli cells in YES 
liquid media and the dry weight of fungal mycelia was measured and aflatoxin levels 
analyzed after 72 h of incubation. a) The percentage of A. flavus mycelial weight was 
calculated and plotted on y-axis. Bars represent measurements relative to the dry weight 
of untreated. b) Percent aflatoxin accumulation in media of 48 h cultures. p-value <0.01 
and n=2. Statistical significance of two-tailed p-values were determined using an 
unpaired t-test for n=2 revealing that there was no statistical difference between control 
and treated samples. Error-bars represent SEM. 
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Figure 5.6: Uptake of V. gazogenes by A. flavus: a) V. gazogenes and A. flavus were co-
cultured in YES liquid media. Every 6 h the OD of the bacteria at 600 nm was measured 
and plotted on y-axis with incubation time in the x-axis (n=3). b) The confocal 
microscopy of A. flavus hyphae in the presence of V. gazogenes at 20x magnification. 
This is a representation of n=3 experiments. 
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Figure 5.7: V. gazogenes increases aflatoxin pathway genes: Quantitative PCR (qPCR) 
comparison of aflatoxin pathway gene (aflR, nor-1, ver-1) expressions in A. flavus during 
the two treatment conditions of live and dead V. gazogenes at 24 h, 30 h and 40 h time 
points of culture growth. Each individual gene expression was normalized to the 
housekeeping gene 18s which was used as reference gene. The 30 h and 40 h samples 
were compared to the 24 h sample of that specific treatment condition to calculate 
relative fold change in gene expressions. Fold changes ≥2.0 with p-value <0.01 were 
considered significantly up or down regulated. Star indicates statistically significant fold 
change as compared to the 24 h control of that specific treatment. 
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Figure 5.8: V. gazogenes increases global secondary metabolite regulatory genes: 
Quantitative PCR (qPCR) comparison of global secondary metabolite regulate (AtfB, 
laeA, veA) gene expression in A. flavus during the two treatment condition of live and 
dead V. gazogenes at 24 h, 30 h and 40 h time points of culture growth. Each individual 
gene expression was normalized to the housekeeping gene 18s which was used as 
reference gene. The 30 h and 40 h samples were compared to the 24 h sample of that 
specific treatment condition to calculate relative fold change in gene expressions. Fold 
changes ≥2.0 with p-value <0.01 were considered significantly up or down regulated. 
Star indicates statistically significant fold change as compared to the 24 h control of that 
specific treatment. 
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Figure 5.9: Scanning electron microscopy of A. flavus uptake of V. gazogenes: Scanning 
electron microscopy of A. flavus hyphae treated with V. gazogenes at 17k magnification. 
The top left image is of control hypha and the left bottom image is of A. flavus in 
presence of V. gazogenes. The magnified image is of a hypha with arrows pointing to the 
bacteria being endocytosed. The scale is 5 µm. 
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Figure 5.10: Transmission electron microscopy of A. flavus uptake of V. gazogenes: 
Transmission electron microscope’s cross sectional images of untreated control A. flavus 
hyphae (top images) and V. gazogenes treated hyphae (bottom images) with 10k 
magnification (left images) and 20k magnification (right images). The arrows point to 
endosomal compartments. This is a representation of n=3 experiments. 
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Figure 5.11: V. gazogenes increases SOD genes: Quantitative PCR (qPCR) comparison 
of SOD gene expression in A. flavus during the two treatment condition of live and dead 
V. gazogenes at 24 h, 30 h and 40 h time points of culture growth. Each individual gene 
expression was normalized to the housekeeping gene 18s which was used as reference 
gene. The 30 h and 40 h samples were compared to the 24 h sample of that specific 
treatment condition to calculate relative fold change in gene expressions. Fold changes 
≥2.0 with p-value <0.01 were considered significantly up or down regulated. Star 
indicates statistically significant fold change as compared to the 24 h control of that 
specific treatment. 
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Figure 5.12: Effect of V. gazogenes on corn infestation of A. flavus: Packaged corn 
kernels were used with 10-kernels/treatment set and the sets were done in triplicate. 
Control (C) was a negative control with no A. flavus or V. gazogenes. V. gazogenes (Vg) 
was a positive control for the bacteria having only V. gazogenes. A. flavus (Af) was a 
positive control for the fungus having only A. flavus. A. flavus + V. gazogenes (Af+Vg) 
was the treatment condition where kernel was infested with A. flavus in the presence of V. 
gazogenes. a) The top panel shows images taken using Leica dissection microscope on 
the 5th day on incubation. b) The graph represents the percent of conidia/spores formation 
on the corn kernels in the presence and absence of V. gazogenes during A. flavus 
infestation. c) The bars represent the percentage of aflatoxin present in the kernels as 
compared to the A. flavus positive control (Af). p-value <0.01. Statistical significance of 
two-tailed p-values were determined using an unpaired t-test for n=3. Error-bars represent 
SEM. Star represents the difference as compared to the control was statistically 
significant. 
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Figure 5.13: Effect of V. gazogenes on Drosophila infection by A. flavus: a) Drosophila 
melanogaster flies were infected with A. flavus in the absence (Af) and presence (Af+Vg) 
of live V. gazogenes cells. We used 3-5 day old female flies, 25 flies/tube (for Af) and 29 
flies/tube (for Af+Vg) in sets of 3 (method was describes earlier). The percentage of flies 
survived per day per tube was calculated and plotted as a line graph. b) Quantitative PCR 
(qPCR) comparison of SAP (pathogenic gene) gene expression in A. flavus during the 
two treatment 2condition of live and dead V. gazogenes at 24 h, 30 h and 40 h time points 
of culture growth. The gene expression was normalized to the housekeeping gene 18s 
which was used as reference gene. The 30 h and 40 h samples were compared to the 24 h 
sample of that specific treatment condition to calculate relative fold change in gene 
expressions. Fold changes ≥2.0 with p-value <0.01 were considered significantly up or 
down regulated. Star indicates statistically significant fold change as compared to the 24 
h control of that specific treatment. 



www.manaraa.com

 105 

REFERENCES

 
Alihosseini, F., J. Lango, K. S. Ju, B. D. Hammock and G. Sun (2010). "Mutation of 

bacterium Vibrio gazogenes for selective preparation of colorants." Biotechnol 
Prog 26(2): 352-360. 

 
Allen, G. R., J. L. Reichelt and P. P. Gray (1983). "Influence of Environmental Factors 

and Medium Composition on Vibrio gazogenes Growth and Prodigiosin 
Production." Appl Environ Microbiol 45(6): 1727-1732. 

 
Amaike S, N. P. Keller (2009). "Distinct roles for VeA and LaeA in development and 

pathogenesis of Aspergillus flavus." Eukaryot Cell. 2009 Jul;8(7): 1051-60. 
 
Baidya, S., R. M. Duran, J. M. Lohmar, P. Y. Harris-Coward, J. W. Cary, S. Y. Hong, L. 

V. Roze, J .E. Linz, A. M. Calvo (2014). VeA is associated with the response to 
oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot. Cell, 13, 
1095–1103. 

 
Banerjee, S., P. M. Gummadidala, R. A. Rima, R. U. Ahmed, G. J. Kenne, C. Mitra, O. 

M. Gomaa, J. Hill, S. McFadden, N. Banaszek, R. Fayad, G. Terejanu and A. 
Chanda (2014). "Quantitative acoustic contrast tomography reveals unique 
multiscale physical fluctuations during aflatoxin synthesis in Aspergillus 
parasiticus." Fungal Genet Biol 73: 61-68. 

 
Bayram, O., S. Krappmann, M. Ni, J. W. Bok, K. Helmstaedt, O. Valerius, S. Braus-

Stromeyer, N. J. Kwon, N. P. Keller, J. H. Yu and G. H. Braus (2008). 
"VelB/VeA/LaeA complex coordinates light signal with fungal development and 
secondary metabolism." Science 320(5882): 1504-1506. 

 
Bbosa GS., D. Kitya, J. Odda, J. Ogwal-Okeng (2013). "Aflatoxins metabolism, effects 

on epigenetic mechanisms and their role in carcinogenesis." SciRes Health 
5(10A): 14-34. 

 
Bennett, J. W. and M. Klich (2003). "Mycotoxins." Clin Microbiol Rev 16(3): 497-516. 
 
Bok, J. W. and N. P. Keller (2004). "LaeA, a regulator of secondary metabolism in 

Aspergillus spp." Eukaryot Cell 3(2): 527-535. 
 
Brase S, G. F., Kramer C, Lindner S, Linsenmeier A.M, Master K-S, Meister A.C, Ruff 

B.M, Zhong S (2013). Chemistry of Mycotoxins, Springer-Verlag Wien. 



www.manaraa.com

 106 

 
Cardwell K. F., J. G. Kling, B. Maziya-Dixon, N. A. Bosque-Pérez (2000). "Interactions 

Between Fusarium verticillioides, Aspergillus flavus, and Insect Infestation in 
Four Maize Genotypes in Lowland Africa." Phytopathology. Mar;90(3): 276-84. 

 
Carolyn A. Haskard, Hani S. El-Nezami, Pasi E. Kankaanpää, Seppo Salminen, Jorma T. 

Ahokas (2001). "Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria." Appl 
Environ Microbiol. 2001 Jul; 67(7): 3086–3091. 

 
Carlos A. Muro-Cach, T. S., Marek Banasik, Tomasz T. Suchecki and Amanda S. Persad 

(2004). "Mycotoxins: Mechanisms of Toxicity and Methods of detection for 
identifying exposed individuals." Journal of Land Use & Environmental Law 
19(2): 537-556. 

 
Cary, J.W.; Dyer, J.M.; Ehrlich, K.C.; Wright, M.S.; Liang, S.H.; Linz, J.E (2002). 

"Molecular and functional characterization of a second copy of the aflatoxin 
regulatory gene, aflR-2, from Aspergillus parasiticus." Biochem. Biophys. Acta, 
1576, 316–323   

 
Cary, J. W., K. Rajasekaran, R. L. Brown, M. Luo, Z. Y. Chen and D. Bhatnagar (2011). 

"Developing resistance to aflatoxin in maize and cottonseed." Toxins (Basel) 
3(6): 678-696. 

 
Cary J.W., M. K. Gilbert, M. D. Lebar, R. Majumdar, A. M. Calvo (2018). "Aspergillus 

flavus secondary metabolites: More than just aflatoxins." Food Safety 6(1): 7-32. 
 
CAST (2003). "Mycotoxins: Risks in plant, animal, and human systems." Council of 

Agricultural Science and Technology, CAST, Ames, IA. Task Force Report No. 
139: 199. 

 
Chanda, A., L. V. Roze, S. Kang, K. A. Artymovich, G. R. Hicks, N. V. Raikhel, A. M. 

Calvo and J. E. Linz (2009). "A key role for vesicles in fungal secondary 
metabolism." Proc Natl Acad Sci U S A 106(46): 19533-19538. 

 
Chang I and J. D. Kim (2007). "Inhibition of Aflatoxin Production of Aspergillus flavus 

by Lactobacillus casei." Mycobiology. 2007 Jun;35(2): 76-81. 
 
Chang, P.K.; Scharfenstein, L.L.; Luo, M.; Mahoney, N.; Molyneux, R.J.; Yu, J.; Brown, 

R.L.; Campbell, B.C (2011). "Loss of msnA, a putative stress regulatory gene, in 
Aspergillus parasiticus and Aspergillus flavus increased  production of conidia, 
aflatoxins and kojic acid." Toxins (Basel), 3, 82–104. 

 
Chitarrini, G., C. Nobili, F. Pinzari, A. Antonini, P. De Rossi, A. Del Fiore, S. Procacci, 

V. Tolaini, V. Scala, M. Scarpari and M. Reverberi (2014). "Buckwheat achenes 
antioxidant profile modulates Aspergillus flavus growth and aflatoxin 
production." Int J Food Microbiol 189: 1-10. 



www.manaraa.com

 107 

 
Cleveland, T. E., C. H. Carter-Wientjes, A. J. De Lucca and S. M. Boué (2009). "Effect 

of soybean volatile compounds on Aspergillus flavus growth and aflatoxin 
production." J Food Sci 74(2): H83-87. 

 
Darshan, N. and H. K. Manonmani (2015). "Prodigiosin and its potential applications." J 

Food Sci Technol 52(9): 5393-5407. 
 
Ehrlich, K.C.; Montalbano, B.G.; Cary, J.W (1999). "Binding of the C6-zinc cluster 

protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in 
Aspergillus parasiticus." Gene, 230, 249–257. 

 
Farmer, J. J., 3rd, F. W. Hickman-Brenner, G. R. Fanning, C. M. Gordon and D. J. 

Brenner (1988). "Characterization of Vibrio metschnikovii and Vibrio gazogenes 
by DNA-DNA hybridization and phenotype." J Clin Microbiol 26(10): 1993-
2000. 

 
Farzaneh M., Z. Shi, M. Ahmadzadeh, L. Hu, A. Ghassempour (2016). "Inhibition of the 

Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by 
Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1." Plant Pathol. J. 
32(3): 209-215. 

 
Fatemeh Siahmoshteh, Zohreh Hamidi-Esfahani1 and Mehdi Razzaghi-Abyaneh (2016). 

"Antifungal Activity, Biodegradation and Production Inhibition of Aflatoxins B1 
and G1 by a Soil Isolate of Bacillus subtilis against Aspergillus parasiticus NRRL 
2999." J Pure Appl Microbio, 10(4): 2541-2549 

 
FDA (2011). FDA Mycotoxin Regulatory Guidance: A guide for grain elevators, feed 

manufacturers, grain processors and exporters. FDA. 
 
Frey-Klett P, Burlinson P, Deveau A et al (2011). Bacterial-fungal interactions: hyphens 

between agricultural, clinical, environmental, and food microbiologists. Microbiol 
Mol Biol Rev 75: 583-609. 

 
Fridovich, I. Superoxide dismutases (1975). Annu. Rev. Biochem., 44, 147–159. 
 
Garcia, M., J. L. Blanco and G. Suarez (1994). "Aflatoxins B1 and G 1 solubility in 

standard solutions and stability during cold storage." Mycotoxin Res 10(2): 97-
100. 

 
Georgianna, D. R. and G. A. Payne (2009). "Genetic regulation of aflatoxin biosynthesis: 

from gene to genome." Fungal Genet Biol 46(2): 113-125. 
 
 
 



www.manaraa.com

 108 

Gratz, S., Q. K. Wu, H. El-Nezami, R. O. Juvonen, H. Mykkänen and P. C. Turner 
(2007). "Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, 
metabolism, and toxicity in Caco-2 Cells." Appl Environ Microbiol 73(12): 3958-
3964. 

 
Greene-McDowelle, D. M., B. Ingber, M. S. Wright, H. J. Zeringue, Jr., D. Bhatnagar 

and T. E. Cleveland (1999). "The effects of selected cotton-leaf volatiles on 
growth, development and aflatoxin production of Aspergillus parasiticus." 
Toxicon 37(6): 883-893. 

 
Guerra-Tschuschke I, I. Martín, M. T. González (1991). "Polyethylene glycol-induced 

internalization of bacteria into fungal protoplasts: electron microscopic study and 
optimization of experimental conditions." Appl Environ Microbiol. May;57(5): 
1516-22. 

 
Gummadidala, P. M., Y. P. Chen, K. R. Beauchesne, K. P. Miller, C. Mitra, N. Banaszek, 

M. Velez-Martinez, P. D. Moeller, J. L. Ferry, A. W. Decho and A. Chanda 
(2016). "Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the 
Generation of Aflatoxin Synthesis Inhibitors." Front Microbiol 7: 814. 

 
Gummadidala, P.M.; Holder, M.E.; O’Brien, J.L.; Ajami, N.J.; Petrosino, J.F.; Mitra, C.; 

Chen, Y.P.; Decho, A.W.; Chanda, A (2017). "Complete Genome Sequence of 
Vibrio gazogenes ATCC 43942." Genome Announc., 5, e00733-17. 

 
Hamidi A, R. Mirnejad, E. Yahaghi, V. Behnod, A. Mirhosseini, S. Amani, S. Sattari, E. 

K. Darian. "The aflatoxin B1 isolating potential of two lactic acid bacteria." Asian 
Pac J Trop Biomed. 2013 Sep;3(9): 732-6. 

 
Hedayati, M. T., A. C. Pasqualotto, P. A. Warn, P. Bowyer and D. W. Denning (2007). 

"Aspergillus flavus: human pathogen, allergen and mycotoxin producer." 
Microbiology 153(Pt 6): 1677-1692. 

 
Holmes, R. A., R. S. Boston and G. A. Payne (2008). "Diverse inhibitors of aflatoxin 

biosynthesis." Appl Microbiol Biotechnol 78(4): 559-572. 
 
Hong, S.Y.; Linz, J.E (2008). "Functional expression and subcellular localization of the 

aflatoxin pathway enzyme Ver-1 fused to enhanced green fluorescent protein." 
Appl. Environ. Microbiol., 74, 6385–6396. 

 
Hong, S. Y., L. V. Roze, J. Wee, J. E. Linz (2013). "Evidence that a transcription factor 

regulatory network coordinates oxidative stress response and secondary 
metabolism in aspergilli." Microbiologyopen, 2, 144–160. 

 
Hong, S. Y., L. V. Roze, J. E. Linz (2013). "Oxidative stress-related transcription factors 

in the regulation of secondary metabolism." Toxins (Basel), 5, 683–702. 
 



www.manaraa.com

 109 

Horn B. W., J. H. Ramirez-Prado, I. Carbone (2009). "The sexual state of Aspergillus 
parasiticus." Mycologia 101(2): 275-280. 

 
Hua, S. S., J. J. Beck, S. B. Sarreal and W. Gee (2014). "The major volatile compound 2-

phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and 
expression of aflatoxin biosynthetic genes of Aspergillus flavus." Mycotoxin Res 
30(2): 71-78. 

 
Imamura, N., K. Adachi and H. Sano (1994). "Magnesidin A, a component of marine 

antibiotic magnesidin, produced by Vibrio gazogenes ATCC29988." J Antibiot 
(Tokyo) 47(2): 257-261. 

 
Jayashree, T., C. Subramanyam (2000). "Oxidative stress as a prerequisite for aflatoxin 

production by Aspergillus parasiticus." Free Radic. Biol. Med., 29, 981–985. 
 
Jermnak, U., A. Chinaphuti, A. Poapolathep, R. Kawai, H. Nagasawa and S. Sakuda 

(2013). "Prevention of aflatoxin contamination by a soil bacterium of 
Stenotrophomonas sp. that produces aflatoxin production inhibitors." 
Microbiology 159(Pt 5): 902-912. 

 
Jiujiang Yu (2013). "Current Understanding on Aflatoxin Biosynthesis and Future 

Perspective in Reducing Aflatoxin Contamination." Toxins 4: 1024-1057. 
 
Kabak, B., E. F. Brandon, I. Var, M. Blokland and A. J. Sips (2009). "Effects of probiotic 

bacteria on the bioaccessibility of aflatoxin B(1) and ochratoxin A using an in 
vitro digestion model under fed conditions." J Environ Sci Health B 44(5): 472-
480. 

 
Kabak, B., A. D. Dobson and I. Var (2006). "Strategies to prevent mycotoxin 

contamination of food and animal feed: a review." Crit Rev Food Sci Nutr 46(8): 
593-619. 

 
Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.; Dennery, P.A.; Forman, H.J.; 

Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J.; Ischiropoulos, H (2012). 
"Measuring reactive oxygen and nitrogen species with fluorescent  probes: 
Challenges and limitations." Free Radic. Biol. Med., 52, 1–6. 

 
Kenne G. J., P. M. Gummadidala, M. H. Omebeyinje, A. M. Mondal, D. K. Bett, S. 

McFadden, S. Bromfield, N. Banaszek, M. Velez-Martinez, C. Mitra, I. Mikell, S. 
Chatterjee, J. Wee, A. Chanda (2018). "Activation of Aflatoxin Biosynthesis 
Alleviates Total ROS in Aspergillus parasiticus." Toxins (Basel). Jan 29;10(2). 

 
Keller, N. P., G. Turner and J. W. Bennett (2005). "Fungal secondary metabolism - from 

biochemistry to genomics." Nat Rev Microbiol 3(12): 937-947. 
 



www.manaraa.com

 110 

Kensler, T. W., J. D. Groopman, D. L. Eaton, T. J. Curphey and B. D. Roebuck (1992). 
"Potent inhibition of aflatoxin-induced hepatic tumorigenesis by the 
monofunctional enzyme inducer 1,2-dithiole-3-thione." Carcinogenesis 13(1): 95-
100. 

 
Kensler, T. W., B. D. Roebuck, G. N. Wogan and J. D. Groopman (2011). "Aflatoxin: A 

50-Year Odyssey of Mechanistic and Translational Toxicology." Toxicological 
Sciences 120(Suppl 1): S28-S48. 

 
Kolpin, D. W., J. Schenzel, M. T. Meyer, P. J. Phillips, L. E. Hubbard, T. M. Scott and T. 

D. Bucheli (2014). "Mycotoxins: diffuse and point source contributions of natural 
contaminants of emerging concern to streams." Sci Total Environ 470-471: 669-
676. 

 
Kong, Q., C. Chi, J. Yu, S. Shan, Q. Li, B. Guan, W. C. Nierman and J. W. Bennett 

(2014). "The inhibitory effect of Bacillus megaterium on aflatoxin and 
cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus." 
Appl Microbiol Biotechnol 98(11): 5161-5172. 

 
Krishnan, S., E. K. Manavathu and P. H. Chandrasekar (2009). "Aspergillus flavus: an 

emerging non-fumigatus Aspergillus species of significance." Mycoses 52(3): 
206-222. 

 
Kumar, P., D. K. Mahato, M. Kamle, T. K. Mohanta and S. G. Kang (2016). "Aflatoxins: 

A Global Concern for Food Safety, Human Health and Their Management." Front 
Microbiol 7: 2170. 

 
Li, X., L. Pan and B. Wang (2011). "[Influence of aflatoxin on Vibrio fischeri 

luminescence]." Wei Sheng Wu Xue Bao 51(12): 1669-1674. 
 
Linz, J. E., A. Chanda, S. Y. Hong, D. A. Whitten, C. Wilkerson, L. V. Roze (2012). 

"Proteomic and biochemical evidence support a role for transport vesicles and 
endosomes in stress response and secondary metabolism in Aspergillus 
parasiticus." J. Proteome Res., 11, 767–775. 

 
Liu, Y. and F. Wu (2010). "Global burden of aflatoxin-induced hepatocellular carcinoma: 

a risk assessment." Environ Health Perspect 118(6): 818-824. 
 
Magnussen, A., M. A. Parsi (2013). "Aflatoxins, hepatocellular carcinoma and public 

health." World J. Gastroenterol., 19, 1508–1512  
 
Mazumder, P. M. and D. Sasmal (2001). "Mycotoxins - limits and regulations." Anc Sci 

Life 20(3): 1-19. 
 



www.manaraa.com

 111 

Miller, M.J.; Roze, L.V.; Trail, F.; Linz, J.E (2005). "Role of cis-acting sites NorL, a 
TATA box, and AflR1 in nor-1  transcriptional activation in Aspergillus 
parasiticus." Appl. Environ. Microbiol., 71, 1539–1545. 

 
Mitchell, N. J., E. Bowers, C. Hurburgh and F. Wu (2016). "Potential economic losses to 

the US corn industry from aflatoxin contamination." Food Addit Contam Part A 
Chem Anal Control Expo Risk Assess 33(3): 540-550. 

 
Mitra C, Gummadidala PM, Afshinnia K et al (2017). Citrate-Coated Silver 

Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus 
parasiticus. Environ Sci Technol 51: 8085-93. 

 
Montibus, M., C. Ducos, M. N. Bonnin-Verdal, J. Bormann, N. Ponts, F. Richard-Forget, 

C. Barreau (2013). "The bZIP transcription factor Fgap1 mediates oxidative stress 
response and trichothecene biosynthesis but not virulence in Fusarium 
graminearum." PLoS ONE, 8, e83377. 

 
Montibus, M., L. Pinson-Gadais, F. Richard-Forget, C. Barreau, N. Ponts (2015). 

"Coupling of transcriptional response to oxidative stress and secondary 
metabolism regulation in filamentous fungi." Crit. Rev. Microbiol., 41, 295–308. 

 
Narasaiah, K. V., R. B. Sashidhar, C. Subramanyam (2006). "Biochemical analysis of 

oxidative stress in the production of aflatoxin and its precursor intermediates." 
Mycopathologia, 162, 179–189. 

 
Negash D (2018). "A review of aflatoxin: occurrence, prevention and gaps in both food 

and feed safety." J Nutr Health Food Eng 8(2): 190-197 
 
Ono, M., S. Sakuda, A. Suzuki and A. Isogai (1997). "Aflastatin A, a novel inhibitor of 

aflatoxin production by aflatoxigenic fungi." J Antibiot (Tokyo) 50(2): 111-118. 
 
Price, M.S.; Yu, J.; Nierman, W.C.; Kim, H.S.; Pritchard, B.; Jacobus, C.A.; Bhatnagar, 

D.; Cleveland, T.E.; Payne, G.A (2006). "The aflatoxin pathway regulator AflR 
induces gene transcription inside and outside of the  aflatoxin biosynthetic 
cluster." FEMS Microbiol. Lett., 255, 275–279. 

 
Ramírez-Camejo L. A., A. P. Torres-Ocampo, J. L. Agosto-Rivera, P. Bayman (2014). 

"An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in 
virulence in Drosophila melanogaster." Med Mycol. Feb;52(2): 211-9. 

 
Rangel, D. E., A. Alder-Rangel, E. Dadachova, R. D. Finlay, M. Kupiec, J. Dijksterhuis, 

G. U. Braga, L. M. Corrochano and J. E. Hallsworth (2015). "Fungal stress 
biology: a preface to the Fungal Stress Responses special edition." Curr Genet 
61(3): 231-238. 

 



www.manaraa.com

 112 

Ratcliffe C., R. L. Sanders, L. Tittel and R. W. O'Brien (1982). "Amylase and protease 
secretion by the marine bacterium Vibrio gazogenes." Aust J Biol Sci 35(4): 457-
467. 

 
Reverberi, M.; Zjalic, S.; Ricelli, A.; Punelli, F.; Camera, E.; Fabbri, C.; Picardo, M.; 

Fanelli, C.; Fabbri, A.A (2008). Modulation of antioxidant defense in Aspergillus 
parasiticus is involved in aflatoxin biosynthesis: A role for the ApyapA gene. 
Eukaryot. Cell, 7, 988–1000. 

 
Reverberi, M.; Zjalic, S.; Ricelli, A.; Fabbri, A.A.; Fanelli, C (2006). Oxidant/antioxidant 

balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res., 
22, 39–47. 

 
Reverberi M., S. Zjalic, F. Punelli, A. Ricelli, A. A. Fabbri, C. Fanelli (2007). "Apyap1 

affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize 
seeds." Food Addit. Contam., 24, 1070–1075. 

 
Reverberi, M., K. Gazzetti, F. Punelli, M. Scarpari, S. Zjalic, A. Ricelli, A. A. Fabbri, C. 

Fanelli (2012). "Aoyap1 regulates OTA synthesis by controlling cell redox 
balance in Aspergillus ochraceus. Appl. Microbiol. Biotechnol., 95, 1293–1304. 

 
Rohlfs, M., M. Albert, N. P. Keller, F. Kempken (2007). Secondary chemicals protect 

mould from fungivory. Biol. Lett., 3, 523–525. 
 
Raters, M. and R. Matissek (2008). "Thermal stability of aflatoxin B1 and ochratoxin A." 

Mycotoxin Res 24(3): 130-134. 
 
Roze, L. V., A. E. Arthur, S. Y. Hong, A. Chanda and J. E. Linz (2007a). "The initiation 

and pattern of spread of histone H4 acetylation parallel the order of transcriptional 
activation of genes in the aflatoxin cluster." Mol Microbiol 66(3): 713-726. 

 
Roze, L. V., R. M. Beaudry, A. E. Arthur, A. M. Calvo and J. E. Linz (2007b). 

"Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in 
Aspergillus parasiticus." Appl Environ Microbiol 73(22): 7268-7276. 

 
Roze, L. V., A. M. Calvo, A. Gunterus, R. Beaudry, M. Kall and J. E. Linz (2004). 

"Ethylene modulates development and toxin biosynthesis in aspergillus possibly 
via an ethylene sensor-mediated signaling pathway." J Food Prot 67(3): 438-447. 

 
Roze, L.V.; Miller, M.J.; Rarick, M.; Mahanti, N.; Linz, J.E (2004). "A novel cAMP-

response element, CRE1, modulates  expression of nor-1 in Aspergillus 
parasiticus." J. Biol. Chem., 279, 27428–27439. 

 
 
 



www.manaraa.com

 113 

Roze, L. V., A. Chanda, M. Laivenieks, R. M. Beaudry, K. A. Artymovich, A. V. 
Koptina, D. W. Awad, D. Valeeva, A. D. Jones, J .E. Linz (2010). "Volatile 
profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA 
regulates branched chain amino acid and ethanol metabolism." BMC Biochem., 
11, 33   

 
Roze, L.V., A. Chanda, J. Wee, D. Awad, J. E. Linz (2011). "Stress-related transcription 

factor AtfB integrates secondary metabolism with oxidative stress response in 
aspergilli." J. Biol. Chem., 286, 35137–35148   

 
Roze, L. V., A. V. Koptina, M. Laivenieks, R. M. Beaudry, D. A. Jones, A. V. Kanarsky 

and J. E. Linz (2011). "Willow volatiles influence growth, development, and 
secondary metabolism in Aspergillus parasiticus." Appl Microbiol Biotechnol 
92(2): 359-370. 

 
Roze, L.V.; Laivenieks, M.; Hong, S.Y.; Wee, J.; Wong, S.S.; Vanos, B.; Awad, D.; 

Ehrlich, K.C.; Linz, J.E (2015).  "Aflatoxin Biosynthesis Is a Novel Source of 
Reactive Oxygen Species—A Potential Redox Signal to Initiate  Resistance to 
Oxidative Stress?" Toxins, 7, 1411–1430. 

 
Schmale DG and Munkvold GP (1998). "Mycotoxins in crops: a threat to human and 

domestic animal health." American Phytopathological Society. 
https://www.apsnet.org/about/Pages/default.aspx 

 
Sigrist, C.J.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, 

L.; Xenarios, I (2013). "New and  continuing developments at PROSITE." 
Nucleic Acids Res., 41, D344–D347. 

 
Skory, C.D.; Chang, P.-K.; Linz, J.E (1993). "Regulated Expression of the nor-1 and ver-

1 Genes Associated with  Aflatoxin Biosynthesis." Appl. Environ. Microbiol., 59, 
1642–1646. 

 
Stoloff, L. a. F., L. (1976). "Information bearing on the hazard to man from aflatoxin 

ingestion." PAG Bull. 6: 21-32. 
 
Strosnider, H., E. Azziz-Baumgartner, M. Banziger, R. V. Bhat, R. Breiman, M. N. 

Brune, K. DeCock, A. Dilley, J. Groopman, K. Hell, S. H. Henry, D. Jeffers, C. 
Jolly, P. Jolly, G. N. Kibata, L. Lewis, X. Liu, G. Luber, L. McCoy, P. Mensah, 
M. Miraglia, A. Misore, H. Njapau, C. N. Ong, M. T. Onsongo, S. W. Page, D. 
Park, M. Patel, T. Phillips, M. Pineiro, J. Pronczuk, H. S. Rogers, C. Rubin, M. 
Sabino, A. Schaafsma, G. Shephard, J. Stroka, C. Wild, J. T. Williams and D. 
Wilson (2006). "Workgroup report: public health strategies for reducing aflatoxin 
exposure in developing countries." Environ Health Perspect 114(12): 1898-1903. 

 



www.manaraa.com

 114 

Tobin, M. B., R. B. Peery and P. L. Skatrud (1997). "Genes encoding multiple drug 
resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus." Gene 
200(1-2): 11-23. 

 
Trail, F., N. Mahanti and J. Linz (1995). "Molecular biology of aflatoxin biosynthesis." 

Microbiology 141 ( Pt 4): 755-765. 
 
Van Der Linden, J. W., A. Warris and P. E. Verweij (2011). "Aspergillus species 

intrinsically resistant to antifungal agents." Med Mycol 49 Suppl 1: S82-89. 
 
Van Krimpen, P.C., W. P. Van Bennekom, A. Bult (1987). "Penicillins and 

cephalosporins. Physicochemical properties and analysis in pharmaceutical and 
biological matrices." Pharm. Weekbl. Sci., 9, 1–23. 

 
Van Rensburg, S. J. (1977). Role of epidemiology in the elucidation of mycotoxin health 

risks. . Mycotoxins in Human and Animal Health C. W. H. a. M. A. M. J.V. 
Rodricks. Park Forest South, IL:, Pathotox Publishers.: 699-711 

 
Varga J., J. C. Frisvad, R. A. Samson (2011). "Two new aflatoxin producing specirs, and 

an overview of Aspergillus section Flavi." Stud Mycol 69(1): 57-80  
 
Wang, K., P. S. Yan, Q. L. Ding, Q. X. Wu, Z. B. Wang and J. Peng (2013a). "Diversity 

of culturable root-associated/endophytic bacteria and their chitinolytic and 
aflatoxin inhibition activity of peanut plant in China." World J Microbiol 
Biotechnol 29(1): 1-10. 

 
Wang K, P. S. Yan, L. X. Cao, Q. L. Ding, C Shao, T. F. Zhao (2013b). "Potential of 

chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus 
parasiticus and aflatoxin." Biomed Res Int. 2013;2013:397142. 

 
Wee, J.; Hong, S.Y.; Roze, L.V.; Day, D.M.; Chanda, A.; Linz, J.E (2017). "The Fungal 

bZIP Transcription Factor AtfB  Controls Virulence-Associated Processes in 
Aspergillus parasiticus." Toxins (Basel), 9, 287. 

 
Williams, J. H., T. D. Phillips, P. E. Jolly, J. K. Stiles, C. M. Jolly and D. Aggarwal 

(2004). "Human aflatoxicosis in developing countries: a review of toxicology, 
exposure, potential health consequences, and interventions." Am J Clin Nutr 
80(5): 1106-1122. 

 
Wu, F. and P. Khlangwiset (2010). "Evaluating the technical feasibility of aflatoxin risk 

reduction strategies in Africa." Food Addit Contam Part A Chem Anal Control 
Expo Risk Assess 27(5): 658-676. 

 
 
 



www.manaraa.com

 115 

Wu, F. and P. Khlangwiset (2010). "Health economic impacts and cost-effectiveness of 
aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-
harvest interventions." Food Addit Contam Part A Chem Anal Control Expo Risk 
Assess 27(4): 496-509. 

 
Wu, F., C. Narrod, M. Tiongco, Y. Liu (2011). "The health economics of aflatoxin: 

global burden of disease." working paper 4. published Feb 2011. Supported by 
International Food Policy Research Institute 

 
Ye J, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T. L. Madden (2012). 

"Primer-BLAST: a tool to design target-specific primers for polymerase chain 
reaction." BMC Bioinformatics. 2012 Jun 18;13:134. 

 
Yin, W.B.; Amaike, S.; Wohlbach, D.J.; Gasch, A.P.; Chiang, Y.M.; Wang, C.C.; Bok, 

J.W.; Rohlfs, M.; Keller, N.P (2012). "An Aspergillus nidulans bZIP response 
pathway hardwired for defensive secondary metabolism operates  through aflR." 
Mol. Microbiol., 83, 1024–1034. 

 
Yin, W. B., A. W. Reinke, M. Szilágyi, T. Emri, Y. M. Chiang, A. E. Keating, I. Pócsi, 

C. C. Wang, N. P. Keller (2013). "bZIP transcription factors affecting secondary 
metabolism, sexual development and stress responses in Aspergillus nidulans." 
Microbiology, 159, 77–88. 

 
Yoshinari, T., Y. Noda, K. Yoda, H. Sezaki, H. Nagasawa and S. Sakuda (2010). 

"Inhibitory activity of blasticidin A, a strong aflatoxin production inhibitor, on 
protein synthesis of yeast: selective inhibition of aflatoxin production by protein 
synthesis inhibitors." J Antibiot (Tokyo) 63(6): 309-314. 

 
Yu, J.; Payne, G.A.; Nierman, W.C.; Machida, M.; Bennett, J.W.; Campbell, B.C.; 

Robens, J.F.; Bhatnagar, D.;  Dean, R.A.; Cleveland, T.E (2008). "Aspergillus 
flavus genomics as a tool for studying the mechanism of aflatoxin  formation." 
Food Addit. Contam. Part A, 25, 1152–1157.   

 
Zeringue, H. J., Jr. (2000). "Identification and effects of maize silk volatiles on cultures 

of Aspergillus flavus." J Agric Food Chem 48(3): 921-925. 
 
Zeroual Y, B. S. Kim, M. Blaghen, K. M. Lee (2006). "Biosorption of bromophenol blue 

from aqueous solutions by Rhizopus Stolonifer biomass." Water, Air and Soil 
pollution, 177: 135-146. 

 



www.manaraa.com

 116 

APPENDIX A: 

PERMISSION TO REPRINT (FOR CHAPTER 2)

Permission to reprint for Chapter 2 titled “Aflatoxin-exposure of Vibrio gazogenes as a 

novel system for the generation of aflatoxin synthesis inhibitors” from Frontiers of 

Microbiology. 



www.manaraa.com

 117 

	

Phani Garimella <gpmadhu@gmail.com>

RE: permission to using article in dissertation

Frontiers Editorial Office <editorial.office@frontiersin.org> Mon, Nov 5, 2018 at 3:07 AM
To: gpmadhu@gmail.com

Dear Phani,

Thank you for your email. 

Under the Frontiers Terms and Conditions, authors retain the copyright to their work. Furthermore, all
Frontiers articles are Open Access and distributed under the terms of the Creative Commons Attribution
License (CC-BY 3,0), which permits the use, distribution and reproduction of material from published articles,
provided the original authors and source are credited, and subject to any copyright notices concerning any
third-party content.

You can therefore freely reuse the article published at Frontiers in your dissertation without having to ask for
permission. More information about CC-BY can be found here: http://creativecommons.org/licenses/by/4.0/

Please let me know if you have any other questions or concerns.

Best regards,

Gearóid

---

Ethics & Integrity Manager: Gearóid Ó Faoleán, PhD

Frontiers

www.frontiersin.org
EPFL Innovation Square, Building I
Lausanne, Switzerland  
Office T  +44 79 34 46 47 49

For technical issues, please visit our Frontiers Help Center frontiers.zendesk.com

---

Research Integrity Manager: Gearóid Ó Faoleán, PhD

Frontiers

www.frontiersin.org
EPFL Innovation Square, Building I
Lausanne, Switzerland  

Office T +44 203 514 26 98

For technical issues, please visit our Frontiers Help Center frontiers.zendesk.com

Gmail - RE: permission to using article in dissertation https://mail.google.com/mail/u/0?ik=b240d1bbb8&view=pt&se...

1 of 2 11/5/18, 9:46 AM



www.manaraa.com

 118 

	

---

Research Integrity Manager: Gearóid Ó Faoleán, PhD

Frontiers

www.frontiersin.org
EPFL Innovation Square, Building I
Lausanne, Switzerland  

Office T +44 203 514 26 98

For technical issues, please visit our Frontiers Help Center frontiers.zendesk.com

[Quoted text hidden]

Gmail - RE: permission to using article in dissertation https://mail.google.com/mail/u/0?ik=b240d1bbb8&view=pt&se...

2 of 2 11/5/18, 9:46 AM



www.manaraa.com

 119 

APPENDIX B 

PERMISSION TO REPRINT (FOR CHAPTER 3)

Permission to reprint for Chapter 3 titled “Complete genome sequence of Vibrio 

gazogenes ATCC 43942” from ASM Genome Announcements a part of ASM Journals. 



www.manaraa.com

 120 

Phani Garimella <gpmadhu@gmail.com>

RE: permission to using article in dissertation

ASM Journals <Journals@asmusa.org> Mon, Nov 5, 2018 at 9:42 AM
To: Phani Garimella <gpmadhu@gmail.com>

Dear	Phani	Gummadidala,

Thank	you	for	your	request.	Authors	in	ASM	journals	retain	the	right	to	republish	discrete	porAons	of
his/her	arAcle	in	any	other	publicaAon	(including	print,	CD-ROM,	and	other	electronic	formats)	of	which
he	or	she	is	author	or	editor,	provided	that	proper	credit	is	given	to	the	original	ASM	publicaAon.	ASM
authors	also	retain	the	right	to	reuse	the	full	ar3cle	in	his/her	disserta3on	or	thesis.	For	more
informaAon,	please	see	the	InstrucAons	for	Authors	secAon	on	copyright	https://aac.asm.org/content/
editorial-policy#copyright.

ASM	no	longer	generates	licensing	agreements	for	this	sort	of	permission	request	through	RightsLink	due
to	the	fees	that	RightsLink	has	levied	on	publishers	for	free	permissions	licenses.		The	language	in	the
copyright	form,	in	the	Statement	of	Author	Rights,	and	in	the	InstrucAons	to	Authors	should	be	sufficient
permission	for	authors	to	confidently	reuse	their	work	in	the	above	menAoned	formats.

Please	contact	us	if	you	have	any	quesAons.

Thank	you

ASM	Journals

journals@asmusa.org

From: Phani Garimella [mailto:gpmadhu@gmail.com]
Sent: Sunday, November 04, 2018 10:27 AM
To: ASM Journals
Subject: RE: permission to using article in dissertation

[Quoted text hidden]

Gmail - RE: permission to using article in dissertation https://mail.google.com/mail/u/0?ik=b240d1bbb8&view=pt&se...

1 of 1 11/5/18, 9:45 AM



www.manaraa.com

 121 

APPENDIX C 

PERMISSION TO REPRINT (FOR CHAPTER 4)

Permission to reprint Chapter 4 titled “Activation of aflatoxin biosynthesis alleviated 

total ROS in Aspergillus parasiticus” from Toxins 



www.manaraa.com

 122 

 


	University of South Carolina
	Scholar Commons
	2018

	Inhibition Of Aflatoxin Biosynthesis With Vibrio Gazogenes
	Phani Madhuri Gummadidala
	Recommended Citation


	Microsoft Word - 5 Abstract USC Dissertation.docx

